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and Rui Huangb

We examine the buckling of a thin elastic film floating on a viscous liquid layer which is itself supported on a

prestretched rubber sheet. Releasing the prestretch in the rubber induces a viscous stress in the liquid,

which in turn induces a compressive stress in the elastic film, leading to buckling. Unlike many previous

studies on wrinkling of floating films, the buckling process in the present study is dominated by viscous

effects whereas gravitational effects are negligible. An approximate shear lag model predicts the

evolution of the stress profile in the unbuckled film that depends on three parameters: the rate at which

the prestretch is released, the thickness of the liquid layer, and the length of the elastic film. A linear

perturbation analysis is developed to predict the wavelength of wrinkles. Numerical simulations are

conducted to predict nonlinear evolution of the wrinkle wavelength and amplitude. Experiments using

elastic polymer films and viscous polymer liquids show trends that are qualitatively consistent with the

predictions although quantitatively, the experimentally-observed wrinkle wavelengths are longer than

predicted. Although this article is focused only on small-strain wrinkling behavior, we show that

application of large nominal strains (on the order of 100%) leads to sharply localized folds. Thus this

approach may be useful for developing buckled features with high aspect ratio on surfaces.
1 Introduction

Elastic instabilities of thin solid lms attached to compliant
substrates have attracted much attention. The most heavily-
studied situation has been the compression-induced buckling
of a stiff, thin elastic lm bonded to a thick elastic substrate of
much lower modulus. Depending on the loading conditions, a
variety of buckling patterns1,2 have been observed. The charac-
teristic wavelength of these patterns is governed by a balance of
the bending energy of the stiff lm and the elastic strain energy
of the substrate. Another well-studied situation is the buckling
of a thin elastic lm oating on a liquid surface, where the
characteristic length scale is governed by a balance of the
bending energy of the lm and the gravitational potential of the
perturbed liquid. A variation of the same situation is a liquid-
bound lm that is under a tensile load due to interfacial
tension.3–5 Both these situations have been exploited to measure
the mechanical properties of thin lms.3,6 One of the motiva-
tions underlying this research is to measure the mechanical
properties of thin lms attached to highly viscous liquids, for
which the previous methods3,6 are unsuitable.
rsity of Pittsburgh, Pittsburgh, PA 15261,

d Engineering Mechanics, University of

tion (ESI) available. See DOI:
Most of the previous studies examined elastic instabilities at
static equilibrium. This paper is concerned with the kinetics of
wrinkling, specically, the rate-dependent buckling instability
of a liquid-supported elastic lm where viscous effects are
prominent. Such situations are known to arise in thin lm
processing of metal, polymer or inorganic materials when a thin
solid lm bonded to a highly viscous layer may relax a residual
compressive stress by buckling out-of-plane.7–10 Viscosity-
dominated rate effects are also relevant to the analogous situ-
ation of lament buckling (rather than thin lm buckling)
which explains how microtubules embedded in cytoplasm
provide support to cell walls.11,12 Viscous effects in buckling are
also likely to be important in the ow of suspensions of high-
aspect ratio solids such as carbon nanotubes or graphene sheets
since viscous drag decreases proportionally with size whereas
bending stiffness decreases more rapidly with a higher power in
size. Thus, at a given aspect ratio and deformation rate, a
nanoscale object under viscous ow is more likely to buckle.

Numerous theoretical and computational studies on the
buckling of thin lms bonded to viscous liquid layers have been
conducted.13–15 Rather than an energy minimization or force
balance approach used for the static buckling problem, the
time-dependent buckling problem is tackled by a kinetic
approach calculating the fastest-growing wavelength for the
given geometry and material properties. The various situations
that have been considered include elastic lms that are innite
in extent,13–15 the effect of lateral extension of the lms that are
This journal is © The Royal Society of Chemistry 2015
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nite in extent,16 elastic lms on viscoelastic liquids,17,18 and
lms with anisotropic elastic properties.19 In all of these studies,
the compressive stress in the lm was prescribed as an initial
condition, appropriate for situations such as residual stresses
arising from epitaxial growth or a mismatch in thermal
expansion of the lm and the viscous layer. Here we consider a
more complex situation where an initially stress-free lm is in
contact with a viscous liquid. When the liquid is subjected to a
compressive ow eld, the corresponding viscous stresses
developed in the liquid induce a compressive stress in the lm.
Unlike the prestress in the previous studies, here the buckles
are generated by the viscous stresses. While carefully-controlled
experiments will be described later in this paper, the basic
phenomenon may be illustrated by a simple “hand experiment”
shown in the Movie M1.mpg (online ESI†). A highly viscous
liquid was poured onto a strip of rubber and allowed to spread
into an elongated puddle. A strip of polyester lm (0.001 or
0.0005 inch thick “plastic shimstock”, purchased from
McMaster-Carr Industrial Supply Co.) was placed on the
surface. The rubber strip was then stretched by hand and
released. In the rst instance shown in the video, the release
rate was relatively slow and little or no buckling was evident. In
the second instance, the release rate was much higher, and
severe buckles appeared. These buckles then relaxed by lateral
extension of the lm, which eventually reached a at state
again. The fact that the buckling process depends on the release
rate suggests that it is induced by viscous forces, although
gravitational effects could be present during the post-buckling
stage. We emphasize that this situation is different from the
previous cases20 where the weight of the liquid provided a
“gravitational stiffness” which determined the buckle wave-
length. In those cases, the balance between bending elasticity
and the gravitational potential of the liquid determines the

buckle wavelength:20 l ¼ 2p
�
Eh3

12rg

�0:25

, where r is the mass

density of the liquid, E is the elastic modulus of the lm, and h
the lm thickness. For the polyester lm in the video, the buckle
wavelength is calculated to be roughly 40 mm – several times
larger than observed in the video. Incidentally, the fact that
gravity is not the primary factor determining the buckles is
shown unambiguously in the video: tilting the rubber strip so
that the normal to the lm surface is horizontal did not change
the buckling behavior signicantly.

The video also shows that if the rubber is stretched to a large
strain and then released, the buckles become localized, remi-
niscent of folds.20,21 Moreover, the surrounding air invades
under the buckle from both edges of the lm. In the case
illustrated, the two air/liquid menisci invading from the edges
do not meet under the lm and a “window” of liquid persists.
Although such air invasion appears visually similar to delami-
nation from the liquid surface,22 it is not true delamination
since a layer of liquid remains adhered to the underside of the
lm.

The generation of tall, localized folds is potentially useful
since it provides a simple route to producing high-amplitude
buckles. When buckles are induced by differential thermal
This journal is © The Royal Society of Chemistry 2015
expansion, typical strains are on the order of 1%, thus limiting
the buckle magnitude to a few percent of the wavelength. In
contrast, commercial rubber sheets can be stretched reversibly
well in excess of 200%. Thus, with a viscous liquid layer, this
strain in the rubber can be harnessed to develop high aspect
ratio features on surfaces. An example of this is illustrated in
Fig. 1. Here the experimental procedure was identical to that
shown in the Movie M1.mpg,† but the layer used to support
the polyester lm was polystyrene (PS) of low molecular weight
(Piccolastic A75, Eastman Chemicals). This PS is a glassy solid
at room temperature, but ows when its glass transition
temperature (�35 �C) is exceeded. Accordingly, the entire
system (lm-on-PS-on-rubber strip) was heated to 100 �C,
removed from the oven, and then immediately stretched by
hand and released, analogous to the Movie M1.mpg.† The
system cools rapidly during this entire stretch-and-release
process, and thus the buckled structure can be quenched. If
the prestretch strain is small, wrinkles of modest amplitude
appear (Fig. 1a), whereas with a large prestretch, the buckles
evolve into tall folds (Fig. 1d). In either case, it is possible to
peel the polyester lm off the surface of the vitried PS
(Fig. 1b, c & e–g), leaving the wrinkles or folds replicated on the
PS layer. Incidentally, it is noteworthy that aer peeling, the
polyester lm is le permanently wrinkled, in contrast to the
corresponding experiment at room temperature (M1.mpg†) in
which the lm relaxed back to a at state. This suggests that in
the high temperature experiment of Fig. 1, the yield strain of
the polyester lm was exceeded during the buckling process.
Regardless, Fig. 1 shows that by using a thermoplastic polymer
as the supporting layer, a surface can be patterned with
wrinkles or folds of large amplitude.

It is important to emphasize that the method of supporting
the liquid layer on a rubber sheet allows the lm to be subjected
to compressive stress homogeneously over almost its entire
length. In contrast, simply pushing on the ends of the lm
would – in the presence of large viscous dissipation – only
induce localized compression. Incidentally, we note that this
experimental procedure resembles that of Vella et al.23 except
that (1) there is a viscous liquid layer between the lm and the
rubber sheet, and (2) the compression occurs at a nite rate
rather than quasi-statically.

The rest of this article examines the early stages of this
process, viz. the initial development of buckles, analytically and
experimentally. Issues such as post-buckling structural evolu-
tion at large strain, or the invasion of air under the buckles, will
not be considered further here. While the chief goal of this
paper is to expand knowledge of dissipative effects in thin lm
buckling phenomena, we mention two practical motivations for
our research. The rst is to develop methods that can generate
high amplitude buckles, as was already discussed in Fig. 1
above. Additionally, we are motivated by the desire to measure
the mechanical properties of reactive compatibilizer lms,
which are thin lms that form at the interface between
immiscible polymers.24,25 These lms, which are roughly one
macromolecule thick, are oen crosslinked and hence solid-
like,26 but there is no method at present to measure their
mechanical properties. Past research has shown how the
Soft Matter, 2015, 11, 1814–1827 | 1815
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Fig. 1 Wrinkles can be quenched using a liquid that can be solidified by cooling. (a and d) correspond to small or large prestretching of the
rubber, respectively. The film can subsequently be peeled off, leaving the wrinkle or fold pattern imprinted on the surface of the vitrified
polystyrene. (b, e–g) show the process during peeling, whereas (c) shows the peeled film and the vitrified polystyrene laid side-by-side.
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equilibrium buckling of thin lms on compliant supports can
be used to estimate the mechanical properties of the lms.3,6

However, those methods cannot be applied to reactive compa-
tibilizers since the bulk liquids have high viscosity (105 Pa s is
typical for molten polymers), and it is not possible to deform
sufficiently slowly to maintain mechanical equilibrium. The
method developed here (with the compatibilizer lm sand-
wiched between two molten polymer layers rather than oating
at the air/polymer surface) offers the possibility of measuring
compatibilizer mechanical properties.

The remainder of this paper is organized as follows. In
Section 2, we use an analytical shear-lag model to predict the
evolution of the compressive stress prole in the lm prior to
buckling, which allows a qualitative comment on the critical
condition and the buckle wavelength. Section 3 performs a
linear perturbation analysis of the solution from Section 2 to
predict the wavelength at which buckles grow the fastest.
Section 4 describes experiments which are compared against
these predictions. Section 5 presents numerical simulations
and discussions.
1816 | Soft Matter, 2015, 11, 1814–1827
2 Analytical model
2.1. Governing equations

The geometry and coordinate system for the model is shown in
Fig. 2a & b. We assume the lm to be a thin elastic plate. The
analysis is similar to that of Huang and Suo13 who studied
wrinkling of a pre-compressed lm on a viscous layer. However,
it differs from Huang and Suo13 in two ways. First, the lower
surface of the viscous layer is not stationary in the present case,
but instead subject to a specied strain rate due to contraction
of the rubber sheet. Second, the lm does not bear a prestress;
instead, the compressive stress in the lm develops with time.
Thus, the buckling instability is driven not by relaxation of the
pre-stressed lm, but by the viscous stresses transferred from
the contracting rubber sheet to the lm via the liquid layer.

As in Huang and Suo,13 the analysis requires solving the
coupled equations describing the elastic deformation of the
lm and the viscous ow of the liquid layer. The various
parameters can be non-dimensionalized using the lm thick-

ness h as the length scale,
hð1� n2Þ

E
as the time scale, and

E
1�n2
This journal is © The Royal Society of Chemistry 2015
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Fig. 2 (a) An initially flat film floating on a fluid layer, covering a prestretched rubber sheet. (b) The film wrinkles when the rubber sheet is
unstretched at a controlled rate. (c) Schematic of experimental setup.
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as the stress scale. Thus, the scaled parameters are: xs ¼ x
h
,

ts ¼ tE
hð1� n2Þ, Hs ¼ H

h
, Ls ¼ L

h
, us ¼ u

h
, ws ¼ w

h
, ss ¼ sð1�n2Þ

E
,

Ts ¼ Tð1� n2Þ
E

, and ps ¼ pð1� n2Þ
E

. Here u and w are the in-plane

and out-of-plane displacements, p, s and T respectively refer to
the pressure, compressive stress and shear stress on the lm, E
and n are Young's modulus and Poisson's ratio of the lm, and h

is the viscosity of the liquid. With these scaled parameters,
the evolution equations for the in-plane and out-of-
plane displacements can be written as (see online ESI for
details†):

vws

vts
¼ v

vxs

�
Hs

3

3

vps

vxs

� Hs
2

2
Ts � bHsxs

�
(1)

vus

vts
¼ �Hs

2

2

vps

vxs

þHsTs þ bxs (2)

where b ¼ (1 � n2)h_3/E is the normalized strain rate. The non-
dimensional boundary conditions to be applied at xs ¼ �Ls
are:

No normal stress:

vus

vxs

þ 1

2

�
vws

vxs

�2

¼ 0 (3)

No bending moment:

v2ws

vxs
2
¼ 0 (4)
This journal is © The Royal Society of Chemistry 2015
No shear force:

v3ws

vxs
3
¼ 0 (5)

No pressure:

1

12

v4ws

vxs
4
� Ts

vws

vxs

¼ 0 (6)

2.2. Shear lag solution

The coupled nonlinear equations can be solved numerically
(Section 5). As an approximation, we present an analytical
shear-lag solution by ignoring the variation of the uid pressure
and setting

vp

vx
¼ 0 (7)

As a result, the ow velocity of the liquid varies linearly from
the bottom surface to the top surface (ESI eqn (S5)†). Further,
we neglect all the nonlinear terms in the governing equations.
With these simplications, and inserting online ESI eqn (S11)
and (S12)† into eqn (2), we get:

vus

vts
¼ Hs0

v2us

vxs
2
þ bxs (8)

which takes the form of a linear diffusion equation with a
dimensionless diffusivity Hs0 and a source term bxs. In effect,
the last term in the preceding equation seeks to generate a
linearly-varying displacement (and hence a constant strain)
Soft Matter, 2015, 11, 1814–1827 | 1817
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throughout the length of the lm, whereas the rst term on the
right hand side seeks to diffusively redistribute the strain to be
consistent with the boundary conditions (zero normal stress at
the lm ends).

With the initial condition, us(xs,0) ¼ 0, and the boundary

condition,
vus
vxs

����
xs¼�Ls

¼ 0, the solution to the diffusion equation

is:

usðxs; tsÞ¼ bLs
2

2Hs0

�
xs � xs

3

3Ls
2

�
þ
XN
m¼1

Am sinðbmxsÞexp
�� bm

2Hs0ts
�

(9)

where bm ¼ ð2m� 1Þp
2Ls

and Am ¼ ð�1Þm
ð2m� 1Þ4

32bLs3

p4Hs0
:

The scaled normal stress ss in the elastic lm is then
obtained as:

ssðxs;tsÞ¼ bLs
2

2Hs0

�
1� xs

2

Ls
2

�
þ
XN
m¼1

Ambm cosðbmxsÞexp
�� bm

2Hs0ts
�

(10)

It is noteworthy that the scaled normal stress ss has a direct
physical signicance: ss is actually the in-plane compressive
strain in the lm. The corresponding dimensionless shear
stress at the interface is obtained from ESI eqn (S12):†

Tsðxs; tsÞ¼� bxs

Hs0

�
XN
m¼1

Ambm
2 sinðbmxsÞexp

�� bm
2Hs0ts

�
(11)

Finally, the scaled out-of-plane displacement ws, can be
obtained from eqn (1). By neglecting the nonlinear terms and
the pressure gradient, we have:

vws

vts
¼ �Hs0

2

2

vTs

vxs

� bHs0 (12)

With eqn (11), we obtain:

wsðxs;tsÞ¼� 1

2
Hs0bts þ 1

2
Hs0

XN
m¼1

Ambm cosðbmxsÞ

� �
1� exp

�� bm
2Hs0ts

�� (13)

Eqn (9)–(11), and (13) together represent the time-dependent
shear lag solution of the problem. These four quantities are
plotted in Fig. 3 for a specic set of parameters. These param-
eters were selected to be the same as those for one of the
experiments (Fig. 8) discussed later.

The shear-lag solution consists of a time-dependent innite
series and a steady-state solution. A dimensionless diffusion
time scale can be dened for the “slowest” term in the innite
series:

ss ¼ 1

Hs0b1
2
¼ 4L2

p2hH0

(14)

which is purely a geometric quantity. The corresponding
dimensional diffusion time is:
1818 | Soft Matter, 2015, 11, 1814–1827
s ¼ ss
h
�
1� n2

�
E

¼ 4L2

p2hH0

h
�
1� n2

�
E

(15)

We can identify two limits of the shear-lag solution. First, in
the short time limit with ts / 0, the in-plane displacement is
almost linear with xs (Fig. 3a), and the out-of-plane displace-
ment is nearly constant (Fig. 3b). Furthermore, except for a
narrow region near the ends of the lm, the in-plane normal
stress (Fig. 3c) is nearly constant and negative (i.e. compressive),
and the shear traction is nearly zero (Fig. 3d).

With increasing time, the solution approaches a steady state
when ts [ ss or equivalently t [ s. In the steady state, the
elastic lm is subjected to a linearly distributed interfacial shear
traction, Ts, and correspondingly, a quadratic distribution of
the normal stress, ss. Meanwhile, the steady-state ow velocity
of the liquid varies linearly from zero at the top surface to the
velocity of the retracting rubber sheet at the bottom. The ow
rate varies linearly with x, leading to a rigid-body motion of the
lm with a constant rate for the out-of-plane displacement, ws.
As seen from eqn (13), in the steady state (t / N), we have

wsðxs; ts/NÞ¼� 1

2
Hs0bts þ 1

2
Hs0

XN
m¼1

Ambm cosðbmxsÞ (16)

where the rst part on the right-hand side is the uniform (i.e.
position-independent) rise of the lm with time, and the second
part captures the steady-state deection prole of the lm.

The quantity most relevant to understanding the buckling
behavior is the compressive stress in the lm, eqn (10). This
stress is always highest at the center (xs ¼ 0):

ssðxs ¼ 0; tsÞ ¼ bLs
2

2Hs0

þ
XN
m¼1

Ambm exp
�� bm

2Hs0ts
�

(17)

The rst term on the right hand side is the maximum
possible value of ss which is reached at the center (xs ¼ 0) in the
steady state (t / N):

smax
s ¼ bLs

2

2Hs0

(18)

Fig. 4a illustrates the time-evolution of the scaled normal
stress at the center given by eqn (17). Regardless of the geometry
or rate, the scaled normal stress rises from zero to smax

s over a
dimensionless timescale proportional to ss. As such, the
dependence of the stress evolution on the experimentally-
controllable parameters (liquid thickness, lm length, and
strain rate) is fully captured by the two dimensionless param-
eters, ss and smax

s . Fig. 4b illustrates the effect of the three
experimentally-controllable parameters on the time-evolution.
In particular, the scaled compressive stress at any instant
increases with increasing lm length (Ls) or increasing rate, or
decreasing liquid layer thickness (Hs0).

The development of the compressive normal stress in the
elastic lm is the driving force for the wrinkling instability.
Kinetically constrained by the viscous layer, the growth of
wrinkles depends on the stress magnitude. As predicted by
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Values of (a) in-plane and (b) out-of-plane displacements, (c) scaled normal stress, and (d) scaled shear stress obtained from the shear lag
solution at various times. The geometric parameters used are: film length 2L ¼ 75 mm, film thickness h ¼ 0.025 mm, liquid layer thickness H0 ¼
0.9 mm, _3¼�0.088 s�1. The material parameters are: modulus E¼ 5 GPa, viscosity h¼ 1170 Pa s, and Poisson's ratio n¼ 0.3. The corresponding
dimensionless parameters are Ls ¼ 1500; Hs0 ¼ 36; b ¼ �1.87 � 10�8. Eqn (14) and (15) give ss ¼ 25 330 and s ¼ 0.00539 s.
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Huang and Suo14 for an innitely long lm subject to a uniform
prestress, the wavelength of the fastest-growing wrinkles
decreases with increasing prestress magnitude, and the growth
rate of the wrinkle amplitude increases with increasing
prestress magnitude. For a nite thin lm, the compressive
stress is typically non-uniform, high around the center and low
near the ends. Qualitatively, wrinkles may be expected to grow
near the center with relatively short wavelength. Near the ends,
the lm remains relatively at since the wrinkles grow slowly
and the wrinkle wavelength is expected to be long.

Since wrinkle wavelengths exceeding the lm length are
difficult to identify experimentally, a critical stress magnitude
for seeing any wrinkles at all may be estimated based on the
classical Euler buckling solution with a scaled critical stress:

scrs ¼ p2

3Ls2
. A critical condition for buckling by the viscous stress

may be estimated by setting the magnitude of the maximum
compressive stress in the steady state (eqn (18)) to exceed the
critical stress, i.e., |smax

s | $ scrs , leading to

jbj$ 2p2Hs0

3Ls
4

(19)

where the absolute value of b is taken because b is negative for
compression. Given specic geometric parameters Ls and Hs0,
this condition predicts a minimum dimensionless strain rate
This journal is © The Royal Society of Chemistry 2015
necessary to induce buckling by the viscous stress. Using typical
experimental values (Ls ¼ 1500; Hs0 ¼ 36, same as in Fig. 8
below), |b| $ 4.7 � 10�11 is obtained, which is over 100-fold
lower than typical experimental values. Furthermore, this
minimum compression rate has a very strong (power �4)
dependence on length. This will be tested experimentally. It
must be emphasized that this minimum compression rate is a
lower bound estimate since the compressive stress over much of
the lm is lower than smax

s .
Finally, according to the Euler buckling model, buckles

of the shortest wavelength that can be sustained in the lm may
be expected to scale inversely with the compressive stress,
lmin � |smax

s |�0.5. Accordingly, eqn (18) suggests that the

wrinkle wavelength is expected to scale as
�
Ls2jbj
Hs0

��0:5

, or

equivalently, the wave number scales as
�
Ls2jbj
Hs0

�0:5

. This

prediction will be tested experimentally.
3 Approximate linear perturbation
analysis

The shear lag solution to the coupled solid–liquid problem
assumes that the lm does not buckle although a deection
Soft Matter, 2015, 11, 1814–1827 | 1819
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Fig. 4 (a) Evolution of the scaled normal stress at the center of the film
(normalized by the long-time value) with scaled time (normalized by
ss). In this normalized form, the evolution is independent of all physical
parameters. (b) Scaled normal stress at the center of the film as a
function of scaled time, for various lengths and applied strain rates. The
open blue circles refer to the same parameters as Fig. 3. The other
curves change one dimensionless parameter as indicated in the
legend.

Fig. 5 Scaled growth rate as a function of scaled wave number at the
center of the film, obtained at different times during compression. All
geometric and material parameters are identical to Fig. 3.
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prole is predicted as a result of mass conservation in the
underlying liquid. However, the induced compressive stress in
the lm could cause buckling instability, deviating from the
shear-lag solution. The stability of the shear-lag solution can be
tested by a linear perturbation analysis assuming an out-of-
plane displacement in the form of:

ws
p ¼ B0 e

Usts+iksxs (20)

and a corresponding out-of-phase perturbation to the in-plane
displacement:

us
p ¼ A0 e

Ustsþi ksxsþ p
2ð Þ (21)

where A0 and B0 are small initial amplitudes, ks ¼ kh is the non-
dimensional wave number of the perturbation, and Us is a non-
dimensional complex growth rate of the perturbation. The
function Us(ks) is dubbed the “dispersion relation” henceforth
in this paper. This approach is an approximate one because the
non-dimensional growth rate Us is taken to be independent of
position and time. In reality, since the stress distribution is non-
1820 | Soft Matter, 2015, 11, 1814–1827
uniform, Us depends on xs. Nevertheless, near the center of the
lm, this approximation is reasonable, and allows comparison
with experiments. Moreover at short times (ts � ss), this
approximation is strictly valid over most of the lm because the
stress is independent of position except in a zone near the ends
(Fig. 3c).

As detailed in the online ESI,† the linear perturbation anal-
ysis can be represented in the form of an eigenvalue problem.
The solution of this eigenvalue problem gives the instantaneous
growth rate Us. Fig. 5 shows Us as a function of the normalized
wave number for the same set of parameters as used in Fig. 3,
and at the same times as used in Fig. 3. Not surprisingly, the
dispersion relation Us(ks) changes with time until ts � 10ss, and
then becomes nearly invariant with time. This is because for ts
[ ss, the only change in shear lag solution with time is the
steady-state spatially-uniform increase in the out-of-plane
deection, which has only a weak effect on the dispersion
relation.

At short times, all wave numbers except those close to zero
are stable, i.e. have negative growth rate, since the scaled
compressive stress, ss, is small. As ss increases with time as per
Fig. 4, the growth rate becomes positive for ks values smaller
than a critical value denoted ksc, with the fastest growth
occurring at a scaled wave number denoted ksm. The values of
ksc and ksm both increase with time until, for ts [ ss, they reach
time-invariant steady-state values.

It is useful to compare the situation at hand with the previ-
ously-studied case of a lm with an initial prestrain resting on a
quiescent liquid layer. In that case, the dispersion relation
depends on two parameters, the prestrain 30, and the liquid
layer heightHs0.14 As a rst approximation, the current situation
may be regarded as analogous, with 30 being taken as the
instantaneous value of ss. This analogy then permits an esti-
mation of the instantaneous dispersion relation simply from
the dispersion relation for the prestrained lm.14 Fig. 6 shows
This journal is © The Royal Society of Chemistry 2015
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Fig. 6 Dispersion relation at three specific times compared with the
dispersion relation from ref. 14 using the instantaneous value of ss as
the prestrain.
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that this analogy is somewhat reasonable: the critical and
maximally-growing wave numbers are in reasonable agreement
for the two situations, whereas the growth rate is higher for the
situation examined in this paper.

We now turn to the dependence of the wrinkling instability
on the compression rate and the liquid layer thickness. Fig. 7a
shows that fastest-growing wave number, ksm, increases with
increasing compressive strain rate, |b|. It is noteworthy that at
long times, the rate dependence agrees reasonably with the
scaling, ksm f |b|0.5 (the best t exponent is 0.52 rather than
0.5), which was anticipated from a stress argument at the end of
Section 2.2.

Fig. 7b shows that the fastest growing wave number reduces
with increasing liquid layer thickness. At long times, the depen-
dence follows the scaling, ksm f Hs0

�0.5, in accordance with the
qualitative stress argument in Section 2.2. However at short times,
ksm is almost independent of the liquid layer thickness. The shear
lag model provides a qualitative explanation for this result. At
short times, eqn (17) can be expanded as a Taylor series to obtain
Fig. 7 Fastest growing wave numbers as a function of (a) applied non-di
parameters are identical to those in Fig. 3, except that b is varied in (a),
dependence of |b|0.5 and Hs0

�0.5 respectively.

This journal is © The Royal Society of Chemistry 2015
ss(xs ¼ 0,ts � ss) ¼ �Hs0ts
P

Ambm
3 cos(bmxs) ¼ bsts ¼ _3t (22)

which is independent of the liquid thickness. Thus, at short
times, the scaled normal stress near the center of the lm is
simply the strain applied by the rubber sheet – increasing with
time but otherwise independent of any geometric parameters.
As a result, the fastest-growing wave number ksm is also inde-
pendent of Hs0 at the short-time limit.

4 Experimental
4.1. Materials and experimental procedure

Fig. 2c shows a schematic of the experimental setup. A poly-
meric lm is oated on a highly viscous layer, which is con-
tained in a stretchable elastomeric tray. The rectangular tray
(141 mm � 105 mm) is made out of silicone rubber (GI-245,
Silicone Inc.), and is capable of large reversible elongation. The
tray is mounted on a trolley-rail system, with the bottom of the
tray leveled. One end of the tray is attached to a linear DC
actuator. A weighed quantity of polyisoprene (molecular weight
�46 kg mol�1; Kuraray Chemicals; h ¼ 1170 Pa s) is poured into
the tray and allowed to stay quiescent for 15–20 hours to ensure
that the surface of the liquid layer is horizontal. The liquid layer
thickness is controlled via the volume of the liquid poured into
the tray, ranging from 0.9 mm to 2.5 mm.

The lms are polyester “shimstock” (McMaster-Carr Indus-
trial Supply Co.) with an elastic modulus (measured in uniaxial
tension) of E¼ 5 GPa. These lms are sold commercially for use
as spacers of precise thickness, and hence are available inex-
pensively in the form of large sheets which can be cut to desired
size. In all experiments discussed here, the lm thickness is 25
mm (nominal 0.001 inch). Limited experiments at lower lm
thickness were also conducted but these lms had some pre-
existing wrinkles and hence are not discussed here.27 Films were
cut into rectangles of 25 mmwidth and lengths ranging from 50
to 80 mm. Each rectangular lm was then laid down slowly on
the liquid surface in an “unpeeling” manner using a manual
translation stage. This procedure guarantees that bubbles do
not get trapped under the lm, and also minimizes damage to
the lm. The lm was allowed to oat quiescently on the liquid
surface overnight before further experiments.
mensional strain rate |b| and (b) substrate thickness at various times. All
and Hs0 is varied in (b). Solid lines are fits to the green triangles with a

Soft Matter, 2015, 11, 1814–1827 | 1821
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In each experiment, the linear stage was actuated at a slow
speed so as to stretch the tray by roughly 15% as compared to its
relaxed length. Note that aer this stretching, the liquid layer
thickness must be slightly smaller than the original value, but
for the strains involved, this effect is negligible. Aer�2 minute
waiting time, the stage was actuated in the opposite direction at
a xed voltage (which controls the speed) to permit retraction of
the tray, and buckles of the lm were monitored. The retraction
was stopped aer about 7% contraction. Note that the retrac-
tion was stopped before the tray recovered its fully-relaxed
length because the rate of recovery would slow down consider-
ably if the tray were allowed to approach its fully-relaxed length.
The tray deformation and lm prole were recorded at 30
frames per s using a camcorder (Panasonic SDR-70). The Movie
le M2.mpg† shows a video of the entire process.

The wrinkle wavelength was of the order of a fewmillimeters,
and hence wrinkles can be observed directly on the lm.
However, direct visual observation has relatively poor sensitivity
to small amplitude wrinkles. Accordingly, the video was recor-
ded so as to capture the image of a white line drawn on paper
and reected off the surface of the lm (see Fig. 2c). This
reection is far more sensitive for detecting height variations in
the lm. It must be emphasized however, that the reected line
Fig. 8 Images of the film at various stages of the wrinkling process. A
compression, (e and f) relaxation phase. The white line in all images is the
profiles of ink markers in the images at the various times listed gives the

1822 | Soft Matter, 2015, 11, 1814–1827
is severely distorted optically and does not represent the actual
wrinkle amplitude. In fact the wrinkle amplitude, which can be
judged qualitatively by examining the edge of the lm, e.g. in
Fig. 8d, remains modest throughout this process.

Experiments under one set of parameters (0.9 mm liquid
layer thickness, 75 mm lm length) were repeated several times.
The degree of reproducibility in three of those experiments is
illustrated in online ESI Fig. S1† (discussed in detail in Section
4.4 below). Limited repeat experiments were also conducted at
other liquid thicknesses or lm lengths and showed similar
reproducibility, however under conditions of weak buckling
(small _3, large H0) it is more difficult to quantify wavelengths
due to the small amplitude and large wavelength of buckles.
4.2. Determination of strain and strain rate

Typical frames extracted from videos such as M2.mpg† are
shown in Fig. 8a–f. The strain rate applied is quantied as
follows. The displacement eld is calculated by using digital
image correlation (DIC) analysis of ink marks placed on the
front edge of the tray. Fig. 8g illustrates the displacement of the
markers with time, and the slope of each displacement prole
yields the instantaneous strain experienced by the edge of the
ll parameters are the same as Fig. 3. (a) initially flat film, (b–d) during
reflection of a white line in the background; see text. (g) Displacement
strain. (h) Strains from (g) vs. time.

This journal is © The Royal Society of Chemistry 2015

http://dx.doi.org/10.1039/c4sm02501f


Paper Soft Matter

Pu
bl

is
he

d 
on

 2
2 

D
ec

em
be

r 
20

14
. D

ow
nl

oa
de

d 
by

 S
to

ck
ho

lm
s 

U
ni

ve
rs

ite
t o

n 
04

/0
3/

20
18

 1
6:

42
:0

8.
 

View Article Online
tray. Experiments with the camera placed at normal incidence,
and conducted without placing the lm on the liquid surface
conrm that the strain prole at the edge is identical to the
strain along the centerline of the tray.

Fig. 8h shows the strain as a function of time. The slight
variability of the strain before the start of the retraction (i.e.
when strain must be zero) is a measure of the uncertainty of the
DIC method. During the retraction phase, the strain increases
almost linearly with time, and the strain rate is taken as the
magnitude of _3 (a negative sign is assigned for compression,
consistent with the analytical section of this paper).
4.3. Qualitative discussion of results

We will now discuss Fig. 8 in detail. This corresponds to a lm
with length 2L¼ 75mm and thickness h¼ 0.025mm on a liquid
layer with thicknessH0¼ 0.9 mm. The strain rate extracted from
the video is _3 ¼ �0.088 s�1. A video of the same process is
available as online ESI.† The dimensionless parameters for this
lm are: Hs0 ¼ H0/h ¼ 36; Ls ¼ L/h ¼ 1500, and b ¼ �1.87 �
10�8. The scaled maximum normal stress predicted by the
shear-lag model is smax

s ¼ �5.9 � 10�4. The non-dimensional
timescale is ss ¼ 25 300, and the corresponding dimensional
Fig. 9 Effect of each of the three parameters, _3, L and H0 on buckling.
constant. (c)H0 is varied at constant Lwhile _3 is roughly constant. Note th
variations in the speed realized by the actuator.

This journal is © The Royal Society of Chemistry 2015
time s¼ 5.39� 10�3 s. It is noteworthy that the entire process of
Fig. 8 occurs over a timescale far greater than s. This points to
an experimental limitation: the time-resolution of 0.033 s (i.e.
video rate of 30 frames per s) is already far larger than s. Hence
the experimental observation is limited to the long-time
behavior (ts [ ss).

In the rst 2–3 frames of the video, the reection of the line
does not appear substantially distorted. It is difficult to identify
precisely when the buckles appear (critical strains will be dis-
cussed below), but by a strain of about 0.01 (Fig. 8b) small
distortions are evident in the reection of the white line over
much of the lm. With increasing compression, the buckles
near the middle sharply increase in amplitude, whereas those
near the ends remain small. Nevertheless, there does not appear
to be a signicant variation in the buckle wavelength across the
length of the lm. Furthermore, the videos do not allow a clear
judgment of whether the buckle wavelength changes with time.
Yet, both the preceding sentences regarding wavelength require
a caveat: typical buckles are �30–40 pixels wide and therefore
any variation in buckle wavelength of less than 10% (corre-
sponding to 3 pixels) cannot be measured reliably.

Incidentally we note that the reected white line in the
images distinctly suggests that the ends of the lm rise
(a) _3 varied at fixed L and H0. (b) L varied at fixed H0, while _3 is roughly
at in (b) and (c), the compression rate is not exactly constant because of

Soft Matter, 2015, 11, 1814–1827 | 1823
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Fig. 10 Conditions for developing buckles. Buckles develop above the
blue points but not below the red points. Solid line has slope of �4.
Open circles are the critical strain rate from numerical simulations.
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upwards. That the front edge of the lm does not appear visibly
raised suggests that the upward displacement is small. More-
over the le end does not appear to rise upwards, but this is an
optical artifact of the camera position. Images of a test lm
resting on a solid substrate with raised ends shows that the
appearance changes with the camera position. This upward
displacement of the ends is opposite of that predicted by the
shear lag model (Fig. 3b). However this discrepancy is attrib-
utable to the fact that the shear lag model does not impose the
full boundary conditions for the vertical displacement w.
Numerical solutions that impose the full boundary conditions
(eqn (3)–(6)) do indeed show an upward displacement of the
ends, as will be discussed in Section 5.

Aer cessation of the strain, the lm relaxes (Fig. 8e and f),
with the wrinkles nearer to the ends relaxing before those near
the center. This process is similar to that elucidated by Liang
et al.16 who showed a diffusive relaxation proceeding from the
edge of the lm as a result of in-plane expansion of the lm. We
will not consider the relaxation behavior in this paper.

Experiments were conducted across a range of compression
rates, lm lengths, and liquid layer thicknesses. Fig. 9 illus-
trates the typical buckled structures as each of these variables is
changed in turn, keeping the other two xed (at least approxi-
mately; see caption to Fig. 9). It is evident that with a decrease in
rate, a decrease in lm length, or an increase in liquid layer
thickness, the wrinkle-amplitude reduces until wrinkles cannot
be seen any more. This may be interpreted in at least two ways.
First, as illustrated by the shear lag model, in the absence of
buckling, there is a certain maximum compressive stress
experienced by the lm. If this stress is insufficient to sustain
buckles at a wavelength comparable to the lm length, buckling
cannot happen. A second way to understand this is to recognize
that the lm can relax by expanding outwards.16 If the
compressive stress cannot build up sufficiently rapidly, the lm
will remain relaxed and at.
4.4. Quantitative analysis

Three quantities were extracted from images taken from videos:
the minimum compression rate required to induce visible
buckles, the critical strain for buckling, and the wavelength of
the buckles. These will each be discussed in turn.

Determining the minimum compression rate necessary for
buckling requires some qualitative judgment about whether
sufficient distortion is evident in the reected image of the
white line. Although there may be some ambiguity from one
observer to another, the distinction can be made consistently,
and hence it is possible to identify bounds for the highest strain
rate that does not show buckles, and the lowest strain rate that
does show buckles. These results are shown in Fig. 10. They are
in reasonable agreement with the scaling, _3 f L�4 (the straight
line) predicted by the stress argument (eqn (19)). Incidentally, a
limited set of experiments (not shown) conducted at 12.5 mm
lm thickness also showed aminimum rate with similar scaling
dependence on the lm length.

We also sought to determine critical strains from the data. In
this context, the critical strain refers not to the strain in the lm
1824 | Soft Matter, 2015, 11, 1814–1827
(which cannot be measured in our experiment) but the strain in
the rubber sheet at the instant when buckles appear. Unfortu-
nately, determining when buckles appear is subject to far more
ambiguity than simply whether they appear (Fig. 10). Neverthe-
less, there is no doubt that in all the experiments, the strains at
which buckles became visible far-exceeds 0.005 – indeed to our
best judgment, most cases exceeded a strain of 0.01. These
values are at least 10-fold larger than the value of smax

s ¼ 5.9 �
10�4 calculated from shear lag model. This is consistent with
the fact that the timescale of buckling far exceeds the diffusion
time scale s needed to reach the steady state. Thus the steady
state was reached and the lm stayed at the constant level of
compression for some time before visible buckles appeared.

Finally, Fig. 11a plots the measured wrinkle wavelengths as a
function of the strain rate for a single lm length of 2L ¼ 75
mm, but at different liquid thicknesses. The chief trends
evident in Fig. 11a are the increase in the wrinkle wavelength at
large H0 and at small compression rate. However, at small
values of H0, the wavelength becomes relatively insensitive to
both of these parameters.

The end of Section 2.2 made a simple argument that the
wavelength should scale as _3�0.5Hs0

0.5Ls
�1. These dependences

were supported by the linear perturbation analysis (Fig. 6).
Experimentally however, the wavelength dependence is weaker
than expected. Fig. 11a shows that the curve with a _3�0.5

dependence is steeper than the measured data, especially at
small H0. The H0 dependence of the wavelength is also weaker
than expected. In the experiments, H0 was increased from 0.9
mm to 2.5 mm, i.e. a factor of 2.7. If l f Hs0

0.5, the wavelength
should have increased by a factor of about 1.67. In fact, at any
given compression rate, the wavelength is seen to increase by no
more than a factor of 1.3. The prediction that l f Ls

�1 is diffi-
cult to test with condence due to the limited range of lm
lengths (65 mm to 80 mm) over which buckles are visible in our
experiments.
This journal is © The Royal Society of Chemistry 2015
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Fig. 11 (a) Experimentally-observed wavelength of wrinkles as a function of compression rate at the various liquid layer thicknesses (inmm) listed
in the legend for film length of 2L ¼ 75 mm. (b) Wavelengths observed in analogous numerical simulations. Note the change in y-range. In both
figures, the solid lines have a _3�0.5 dependence, but are not fits to any of the data.
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One may also quantitatively compare the experimentally-
observed wavelengths against predictions of the linear pertur-
bation analysis. This comparison (online ESI Fig. S1†) shows
that the observed wavelengths are typically twice of those pre-
dicted by linear perturbation analysis.

4.5. A critical view of the experiments

The chief critique of the experiments is that they cover only a
limited parameter space. Most importantly, the experiments are
all in the following regime: (1) H0 [ h, (2) l � H0, (3) the non-
buckling region is a signicant fraction of the lm length, and
(4) buckles appear at t [ s. Whether the results would be
qualitatively similar outside of this regime is not clear. A
particularly interesting limit is when s and smax

s are both large,
e.g. because the lm length, compression rate, or viscosity is
large. In this case, the compressive stress builds up rapidly to a
large value, and thus buckles are likely to appear at t < s. In the
context of shear lag model, this limit offers considerable
simplication since as per eqn (23), ss ¼ _3t, not just at the
center, but over most of the lm. Accordingly, all locations of
the lm except near the ends are expected to behave identically.
However this limit also raises a potential complication: since ss
grows with time in this regime, the fastest-growing wavelength
changes continuously. In fact the dispersion relation is such
that the longest wavelengths become unstable at the shortest
times, but they grow slowly. In contrast, shorter wavelengths
become unstable later, but they can grow much faster. Thus if a
long wavelength mode starts with a large amplitude, it may
become dominant simply because it becomes unstable earlier.
Accordingly, the buckling process may become sensitive to long-
wavelength imperfections.

Conducting experiments so that buckles appear at t � s
however is much more challenging. Changing most of the
geometric or material properties is difficult: polymers with
This journal is © The Royal Society of Chemistry 2015
much higher viscosity at room temperature are available but
they tend to be viscoelastic and furthermore take a much longer
time to settle in the tray; increasing the lm length much
beyond the 75 mm used here would require far more careful
handling to avoid damage before the lm is deposited on the
surface; using low modulus elastomeric lms increases the
difficulty of lm handling since long lms tend to stick to
themselves because of static electricity; reducing H0 greatly
increases the time needed for the liquid to level itself in the tray.
Thinner lms are available but tend to have more defects.
Indeed we have conducted experiments with polyester lms of
thickness down to 4.5 mm,27 however these lms had numerous
small pre-existing wrinkles. In light of these limitations, the
regime where buckles appear at t < s is difficult to access. The
most likelihood of success is by increasing the compression
speed: our DC actuator offers a maximum speed of roughly 30
mm s�1, whereas linear actuators with speeds of 500mm s�1 are
available. Such higher speeds may require some additional
changes, e.g. the use of tension springs to guarantee that the
rubber tray actually retracts at the imposed speed. Other
potentially-fruitful approaches may be to reduce the viscosity
(similar to our “hand experiments” of the Video M1.mpg†),
while also reducing Hs0 signicantly.

We also note that large strain, viscous dominated experi-
ments may also be conducted by entirely different sample-
handling approaches. For instance one may readily prepare
trilayer lms (elastomer, glassy polymer, solid polymer) by
coextrusion of plastics, or by spincoating polymers onto rubber
sheets. The large strain retraction experiments may then be
conducted at elevated temperatures at which the glassy polymer
is molten, analogous to Fig. 1. However these experiments
would likely suffer from complications such as uid viscoelas-
ticity, geometric imperfections, or non-isothermal effects, and
likely not permit a “clean” comparison with theory. On the other
Soft Matter, 2015, 11, 1814–1827 | 1825
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hand, these approaches would be valuable in materials science
for developing surfaces with large amplitude textures.

5 Numerical simulations

The coupled differential equations for the in-plane and out-of-
plane displacements, eqn (1) and (2), subject to the boundary
conditions of eqn (3)–(6) were solved numerically (see online
ESI†) following a method similar to Liang et al.16 Fig. S2† shows
the evolution of the displacement and stress in the lm from
the simulations using the same parameter values (2L ¼ 75 mm,
h ¼ 0.025 mm, H0 ¼ 0.9 mm, _3 ¼ �0.088 s�1) as used in Fig. 3
and 8. The shear lag solution shows excellent agreement with
the numerical simulation over most of the lm except near the
ends up to ts ¼ 10ss. As the simulation continues, observable
wrinkles appear aer ts ¼ 55ss, corresponding to about 0.3 s in
dimensional time. Fig. S3† shows the growth of wrinkle
amplitude and the simulated wrinkle proles. The wrinkle
proles are comparable to the experiment in Fig. 8b–d,
although the wrinkle amplitudes were not measured experi-
mentally. Consistent with the experiments, the simulations
show that wrinkles appear only when t [ s, i.e. aer the
compressive stress in the lm has reached the steady state.
Fig. S3b† shows that even without any initial perturbation,
wrinkling occurs near the center of the lm with a specic, well-
dened, wavelength. Limited simulations show that this buck-
ling mode is insensitive to the initial perturbation: similar
wrinkles are obtained with random initial perturbations of
small amplitude. Interestingly, the growth of the wrinkle
amplitude appears to follow a simple power law: A � (t � tc)

0.5,
as indicated by the solid line in Fig. S3a.† Finally we note from
Fig. S3† that the ends of the lm show an upward displacement,
also consistent with experiments.

Numerical simulations were then conducted to test whether
the experimental observations of Fig. 9 could be captured by the
model. The results are summarized in Fig. S4,†which shows the
lm proles under various conditions, all at the instant when
the applied strain _3t ¼ 0.06. The effects of strain rate and lm
length noted experimentally are both well-captured by the
simulations (Fig. S4a and b†): the wrinkle magnitude decreases
with decreasing rate or lm length until the wrinkles nearly
disappear. However, Fig. S4c† shows that the effect of liquid
thickness is not accurately reproduced: simulations show that
the wrinkle amplitude increases with increasing H0, in contra-
diction with experiments in Fig. 9c. This discrepancy is likely
due to the lubrication approximation which assumes a thin
viscous layer (i.e., H0 � l) and becomes inaccurate for a rela-
tively thick liquid layer. Indeed while the full analysis14 shows
that the growth rate plateaus for Hs0 > 10, the lubrication
analysis predicts an unbounded increase with Hs0. Thus for Hs0

> 10, the lubrication approximation severely overestimates the
wrinkle growth rate.

We then sought to identify the conditions under which
wrinkles appear, i.e. a numerical analog of Fig. 10. Experimen-
tally, the determination of whether wrinkles appear is made
visually, as described in Section 4.4. Numerically, we apply an
arbitrary criterion that wrinkles become visible if the amplitude
1826 | Soft Matter, 2015, 11, 1814–1827
exceeds 0.05 mm at the instant when _3t ¼ 0.06. This criterion
allows calculating the minimum strain rate for wrinkling under
given simulation conditions. These calculated values for Hs ¼
0.9 mm are plotted as open circles in Fig. 10. The simulations
show reasonable agreement with experiment although it must
be noted that the quality of agreement may improve or worsen if
our arbitrary criterion (buckling amplitude of 0.05 mm) were to
be changed. More importantly, the numerically-determined
critical strain rate has a similar dependence on the lm length
as the scaling _3 f L�4 (the straight line) predicted by the stress
argument (eqn (19)).

Finally Fig. 11b quanties the dependence of the wrinkle
wavelength on the strain rate and the liquid layer thickness at a
lm length of 2L ¼ 75 mm. The qualitative trends are similar to
experiments (Fig. 11a): the wavelength increases with
decreasing rate, or with increasing liquid layer thickness.
However, the wavelength values are typically 40% smaller than
found experimentally, and furthermore, they show a weaker
dependence on rate than experiment. Similar to the comments
above, this discrepancy may be attributed to the assumption of
a thin liquid layer in the lubrication approximation of the
model.

6 Conclusion

In summary, this article shows that by using an elastomeric
sheet as a “handle” and a viscous liquid as a supporting layer,
an elastic lm can be subjected to severe compression, and
therefore wrinkles or high amplitude folds can be developed.
This article focuses on the small-deformation regime. Dimen-
sional analysis suggests that the buckling behavior is controlled
by three non-dimensional parameters. Two of these parameters
are geometric: the lm length and the liquid layer thickness,
both normalized by lm thickness. The third is mechanical: the
strain rate, normalized by a time scale proportional to the ratio
of the liquid viscosity to the lm modulus. This article develops
a mechanical model which captures the coupling between the
linear elastic deformation of the lm and the viscous ow of the
liquid layer under lubrication approximations. For the limiting
case when out-of-plane displacements are negligible, a shear lag
model is developed to predict evolution of compressive stress in
the elastic lm. An approximate linear perturbation analysis of
this baseline solution predicts the rate at which perturbations at
various wave numbers grow, and thus identies the fastest
growing mode. Numerical simulations of the full set of equa-
tions are also conducted which predict evolution of wrinkle
amplitude and their wavelength. Experiments in one limiting
regime (in which wrinkles appear aer the compressive stress
reaches the steady state) show that experimental trends are
qualitatively consistent with these predictions. Quantitatively,
the wavelengths measured experimentally are typically two-fold
larger than those predicted by linear perturbation analysis, and
�40% larger than predicted by numerical simulations.

One motivation for this research was to develop a method to
measure the mechanical properties of compatibilizer lms24–26

formed by a chemical reaction at the interface between
immiscible homopolymers, or of other thin lms such as
This journal is © The Royal Society of Chemistry 2015
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surfactant monolayers or graphene sheets in contact with
viscous media.28,29 Although a rst step, this article is not a
sufficient basis for such a method: a more accurate prediction
of wave number, a validation in the short time limit discussed
in Section 4.5, and a modied model that accounts for a thick
viscous overlayer would be necessary before this approach can
be used for thin lm metrology. A second motivation was to
develop a method of generating high aspect ratio features on
surfaces. This paper already shows an example of how high
amplitude wrinkles can be developed and quenched using a
thermoplastic polymer as the substrate liquid (Fig. 1d–g).
Further implementation of this idea would benet from a
clearer understanding of the post-buckling structural evolution,
and in particular of how sinusoidal wrinkles evolve into sharp,
localized folds. Particularly useful for this application is that
using a rubber layer to support the liquid allows an additional
level of control, e.g. by patterning the rubber so that buckles
appear at programmed locations.
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