Inheritance 4

Monday, November 14,2022 12:55 PM

Base /?d ent™

1

ECE 244
Programming Fundamentals

Lec.25: Inheritance 4 Polymorphism

’Dorim‘/d\i\fx

C\“% (h;\l! : Q\ass Vweu* S

Ding Yuan 3
ECE Dept., University of Toronto C\ass
http://www.eecg.toronto.edu/~yuan

The problem

4 class Polygon {) .

5 protected: (‘WD h&

6 int width, height;

7 public: <wid> width

8 wvaid set_values (int a, int B) { width=a; height=b; }

9} (nt aree C fedyrn 03

] 21 int main () {

11 class Rectangle: public Polygon{ 22 Rectangle rect;

12 public: 23 Triangle trgl; Bl

13 int area() { 24 Polygon * ppolyl = ▭ ©'49°n 7
return width*height; 257 Polygon * ppoly2 =

26 ppolyl->set_values it [Viow
27 ppoly2->set v

28 cqit << rect.area() <<'\n';]a&‘\'
29 Tt << trgl.area() <<'\n'; -

New Section 1 Page 1

a The problem (cont.)

4
§ °+ What if you want to be able to invoke “area()” using a
I pointer to an object of base class
|
\

| 22 Rectangle rect; U
¥ 23 Triangle trgl; ! Warr Gepe —
i 24 Ppolygon * ppolyl = ▭ Glhior
r 25 Polygon * ppoly2 = &trgl; ,J
i E.g., ppolyl->area() will invoke rect.area(), and ppoly2->area() 0 €0 27’1// ¢v eyrov
7 will invoke trgl.area() =

ATOJ% orffacic)/'

|
i+ More generally, we want use a pointer to the base class object
to invoke a function that is implemented in a derived class

You cannot do it using what we have learnt so far

| Some real world examples

* A network system can use different protocols

void connect (Sender r) {
,)Send iy
I // Which send() is invoked depends on
| // the actual type of sender
1 ; (TCP)Sender | [UDP)Sender | | Other..

&ase C (c\sg

» Server fails frequently in data centers; you may have

Choose a new server Choose a erver @r] Aj
: —_—
from th¢ same r%k from a different raé

Woid Choose necs

New Section 1 Page 2

olution: virtual functions

If a function is declared as virtual in base class A,
and redefined in derived class B, then a call made
Polygon { via a pointer, which is declared as A* type but
; actually points to an obj. of type B, will cause the
function defined in B being invoked ?0\\3jw\ F&\\ﬁ]
int a, int b) { width=a; height=b; } Poeps
9) { return @; } TP PP3 —«94%1\3/
16 };

iangle trgl;
12 ss Rectangle: public Polygon { Phl ¥ vl = &rect:
13 public: ygon © ppoy rect;

- . . . Polygon * ppoly2 = &trgl; S
14 int area() { return width*height; } ppolyl->set_values(4,5); & O

virtual int area(

i: b ppolyz-:»sit_valuesgéjt,sﬁj ¢ />
. . cout<<ppolyl-zarea(); 20
17 class Triangle: public Polygon { _ . a _I= “lare
18 public: cout<<ppoly2->area(); // %P fb \b\\jﬂjmt. 0\(‘8/
19 int area() { return width*height/2; } - T
20 }; Parentt {Ln L DA

What if we remove the “virtual” keyword from line 9?7

((;V\L(/Dh (DDC ?o\wj“&\ 3

Polymorphism

» A class that declares or inherits a virtual function is called a
polymorphic class
Both Rectangle and Triangle are polymorphic classes of Polygon

Both TCP_Sender and UDP_Sender are polymorphic classes of
Sender

New Section 1 Page 3

Virtual functions: more details

* The decision as to which inherited function to call is made at
runtime when the function is invoked (rather than at compile
time) depending on the type etarget object
* This feature is also called(late binding® v (Me

* The virtual function in Base class is like a
“placeholder” declaration of the function

* You cannot-deglare a member variable as virtual
wil "“l.,OY,eM' or

L’d@s"/\,{(—}p,/4

Pure virtual functions

If we never intended to use “Polygon” to create objects (i.e., we
use the base only to derive classes), then we do not fill dummy
function definition

class Polygon { Pb\") ?/'
protected:

int width, height; Compil .
public: pile dineg

void set_values (int a, int ;—heightsb; }
virtual int area() P i ctdan
10 }; ~ 7

« A class that contains at least one pure virtual function is called
an abstract cla

+ Also called afp interface

* You cannot in i object of an abstract class

But there i1s no free lunch

* At runtime, a call to a virtual function is no longer a
simple jump

* Needs to figure out the call target
« Performance penalty: more expensive than a normal call

+ Implementation: vtable (virtual method table)

New Section 1 Page 4

)\m\f) €Do

ga/‘j? 0701 n! DO{(,/QA b\ar

- C{FQ'M
ol Hra

Ui roal foncdian

o sy act A Virtoal Soe C):'Q/‘
/

)

Wk By Vifhog) feoty=0

5

\(W\'§
Q\@/\/L C C}‘Q«({V]Q (bomj'

g'[Lol
vtable

» For every class, there is a table that maps each virtual
function to the most-derived function target

* Each object has a pointer to the vtable of its

Rectangle @

int Polygon::area \/P} 's
Polygon @ = ▭ Polygon vtable return_8;
area(); area() w
2\) L int Rectangle::area()
\ %ﬁ:?‘;{le vtable /a return wi ght; L
()j hdden C\‘l\')\ Triangle \.rtznble_(;,.....---)j-"'c Tr‘iangle::am.ea(} { B Func m*ﬂ\/ {)’l ry
(“Q"V\Wg\ area() return width*height/2; VPA‘ -
AN
g o) Viable
@A u\\"'),]m ' T T
Ky | YOB A 1555 P ores

Ol > VOII\VWU\JQ ()

Overhead

* On C++, this overhead is 6-13% compared w/software using
only non-virtual function calls

+ Also prevent compilers from other optimizations, e.g., function
inlining

* Modern systems use frameworks, tend to make things worse

* Just-In-Time compiler can use inline caching to reduce this
overhead

New Section 1 Page 5

