
Everything you Need to Know for the First Midterm of Math 317

1. A review of important properties of cross and dot products that are used in the course

- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- $\vec{a} \cdot \vec{a} = \|\vec{a}\|^2$
- $(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b})$
- $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$
- $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \theta$
- $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$
- $(c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b}) = \vec{a} \times (c\vec{b})$
- $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$
- $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{b} \cdot \vec{a}) \vec{c}$
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

2. Vector Valued Functions

- A vector valued function is a function that takes 1 or more variables as an input and outputs a vector in real space (real space is \mathbb{R}^2 or \mathbb{R}^3 for example).
- Vector valued functions have the form $\vec{r} = \langle x, y, z \rangle = x\hat{i} + y\hat{j} + z\hat{k}$
- We often use parametric representations for the components of \vec{r} using 1 or more parameters (ei. $\vec{r} = \langle x(t), y(t), z(t) \rangle$).
- If \vec{r} is a vector-valued function pointing to the position of an object moving through space (we are modelling this object as a flying dot), then its velocity is $\vec{v} = \frac{d\vec{r}}{dt} = \dot{\vec{r}} = \langle \dot{x}(t), \dot{y}(t), \dot{z}(t) \rangle$, and its position is $\vec{a} = \frac{d^2\vec{r}}{dt^2} = \ddot{\vec{v}}$.
- The velocity vector is tangent to the curve at the point $\vec{r}(t)$. We can find a vector of length 1 that points in the direction of \vec{v} by normalizing it:

$$\hat{T} = \frac{\vec{v}}{\|\vec{v}\|}$$

This is called the unit tangent vector.

3. Parametrization of a circle

- A circle in the plane can be parametrically represented by the vector-valued function $\vec{r} = \langle R \cos \theta + a, R \sin \theta + b \rangle$, where R is the radius of the circle, and (a, b) is the center of the circle.

- The speed of the moving object is given by

$$v = \|\vec{v}\| = \dot{\theta}R,$$

where $\dot{\theta}$ (also sometimes ω) is the angular speed (The rate of change of angle subtended by the arc traced by the moving dot with respect to time).

- The acceleration of the moving dot is given by

$$\vec{a} = \frac{dv}{dt}\hat{T} + R\dot{\theta}^2\hat{N} = \frac{dv}{dt}\hat{T} + \frac{v^2}{R}\hat{N},$$

where $\hat{N} = \langle -\cos \theta, -\sin \theta \rangle$, the principal unit normal vector, points towards the circle (more on that later).

4. Derivatives and integrals of vector-valued functions

- The fundamental theorem of calculus also applies to vectors

$$\int_{t_0}^{t_1} \frac{d\vec{r}}{dt} dt = \vec{r}(t_1) - \vec{r}(t_0),$$

- Properties of derivatives of vector-valued functions

- Let $\vec{u} = \vec{u}(t), \vec{v} = \vec{v}(t)$ be in \mathbb{R}^3 and
- Let $\phi = \phi(t), f = f(x, y, z)$ be scalar functions. Then
 - $\frac{d}{dt} [\phi(t)\vec{u}(t)] = \frac{d\phi}{dt}\vec{u} + \phi \frac{d\vec{u}}{dt}$
 - $\frac{d}{dt} [\vec{u}(t) \cdot \vec{v}(t)] = \frac{d\vec{u}}{dt} \cdot \vec{v} + \vec{u} \cdot \frac{d\vec{v}}{dt}$
 - $\frac{d}{dt} [\vec{u}(t) \times \vec{v}(t)] = \frac{d\vec{u}}{dt} \times \vec{v} + \vec{u} \times \frac{d\vec{v}}{dt}$
 - $\frac{d}{dt} [f(\vec{u}(t))] = \nabla f(\vec{u}(t)) \frac{d\vec{u}}{dt}$
 - $\frac{d}{dt} [\vec{u}(\phi(t))] = \dot{\vec{u}}(\phi(t)) \phi'(t)$
 - $\frac{d}{dt} [\|\vec{u}(t)\|] = (\vec{u}(t) \cdot \frac{d\vec{u}}{dt}) / \|\vec{u}(t)\|$

5. Rate of change of distance and speed

- The rate of change of speed of an object is given by

$$\frac{d}{dt} [\|\vec{r}\|] = \frac{\vec{r} \cdot \vec{v}}{\|\vec{r}\|}$$

- If this quantity is positive, the object is moving away from the origin. If it is negative, then the object is moving towards the origin.
- The rate of change of speed is

$$\frac{d}{dt} [\vec{v}(t)] = \frac{\vec{v} \cdot \vec{a}}{\|\vec{v}\|}$$

- If this quantity is positive, then speed and acceleration are at an acute angle. If it is negative, they are at an obtuse angle. If it is 0, then $\vec{v} \perp \vec{a}$ for all t .

6. Arc-length

- In general, the arc-length of a curve generated by $\vec{r}(t)$ is

$$s = \int_0^t ds = \int_0^t \|\vec{r}(t)\| dt$$

- If we reparametrize our function in terms of polar coordinates, where $x = r \cos t, y = r \sin t, r = r(t)$, and $\theta = \theta(t)$, then ds becomes

$$ds = \sqrt{(dr)^2 + r^2(d\theta)^2}$$

- If you solve for arclength and then solve for t as a function s , then you can reparametrize a function $\vec{r}(t)$ as $\vec{r}(t(s))$. This function will have the same speed for all t .

7. The independence of curve geometry to parametrization

- There are an infinite number of parameterizations for a given curve in space
- The general form of the equation of a line segment is

$$\vec{r} = \vec{r}_0 + t\vec{v}, \quad a < t < b$$

where \vec{r}_0 is a vector pointing to a point on the line and \vec{v} is a vector parallel to the line. This mimics the form $y = mx + b$ in 2D.

- It is helpful to think of this through vector addition using the tip-to-tail method. \vec{r}_0 points to the line, and \vec{r} points to the sum of this vector and scalar multiples (more specifically t multiples) of \vec{v} .
- Thinking of this definition, you could replace v with any scalar multiple, $c\vec{v}$, since it would be parallel and get the same line. Likewise, you could replace t with any function of t , say $f(t)$, and you would get the same line. This is provided that you adjust the bounds on t so that the line segment starts and ends in the same place.
- In general, any curve generated by $\vec{r}(t)$ will also be generated by $\vec{r}(u(t))$, provided that u is continuous, smooth, and follows the same constraints as t . However, this does not mean that $\vec{r}(t)$ and $\vec{r}(u(t))$ have the same physical properties.

8. The binormal and principal unit normal vectors

- The principal unit normal vector, \hat{N} , is the vector that is perpendicular to the unit tangent vector, \hat{T} , and points inward relative to the curve.
- \hat{N} is calculated as

$$\hat{N} = \frac{\hat{T}'}{\|\hat{T}'\|} = \frac{(\vec{v} \times \vec{a}) \times \vec{v}}{\|(\vec{v} \times \vec{a}) \times \vec{v}\|}$$

- The binormal vector, \hat{B} , is the vector that is orthogonal to both \hat{N} and \hat{T} .

- \hat{B} is calculated as

$$\hat{B} = \hat{T} \times \hat{N} = \frac{\vec{v} \times \vec{a}}{\|\vec{v} \times \vec{a}\|}$$

- \hat{B} , \hat{N} , and \hat{T} can be thought of as an alternative basis that moves with the object along the curve. The plane that is spanned by \hat{T} and \hat{N} and that is orthogonal to \hat{B} is called the osculating plane (from the latin word for to kiss).
- \hat{T} , \hat{N} , and \hat{B} have the property that
 - $\hat{T} = \hat{N} \times \hat{B}$
 - $\hat{N} = \hat{B} \times \hat{T}$
 - $\hat{B} = \hat{T} \times \hat{N}$

9. Torsion and curvature

- Curvature, κ , measures how much a curve “curves” it is calculated as

$$\kappa = \frac{\|\vec{r}' \times \vec{r}''\|}{\|\vec{r}'\|^3} = \|\hat{T}'(s)\| = \|\vec{r}''(s)\| = \frac{\|\hat{T}'(t)\|}{\|\vec{r}'(t)\|} = \frac{\vec{a} \cdot \hat{N}}{\|\vec{v}(t)\|^2}$$

The first equation is usually used the most.

- When a curve is constrained to the plane $z = 0$, that is the xy -plane, the formula for curvature reduces to

$$\kappa = \frac{|x'y'' - y'x''|}{[(x')^2 + (y')^2]^{3/2}}$$

if x and y are both functions of t or

$$\kappa = \frac{|y''|}{[1 + (y')^2]^{3/2}}$$

if you have an explicit function for y in terms of x

- The osculating circle at t is the circle that best fits the curve $\vec{r}(t)$ at t .
- The radius of the osculating circle, ρ , is called the radius of curvature and is calculated as

$$\rho = \frac{1}{\kappa}$$

- The torsion (not to be confused with torque) of a curve, τ , is the “out of plane twist.” If you imagine a helix in space, the more coiled the helix is, the greater the torsion will be. It also describes how much the osculating plane will “wobble.”
- Torsion is calculated as

$$\tau = \frac{(\vec{v} \times \vec{a}) \cdot \frac{d\vec{a}}{dt}}{\|\vec{v} \times \vec{a}\|^2}$$

- If a curve is contained in a plane (that is, its points are co-planar), then the torsion, $\tau = 0$.

10. Normal and tangential components of acceleration

- At this point, we have developed enough tools to find several forms of the equation

$$\vec{a} = a_T \hat{T} + a_N \hat{N}$$

- The tangent component of acceleration can be written as

$$a_T = \vec{a} \cdot \hat{T} = \frac{\vec{r}' \cdot \vec{r}''}{\|\vec{r}'\|} = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

- The normal (or sometimes centripetal in physics) component of acceleration can be written as

$$a_N = \vec{a} \cdot \hat{N} = v^2 \kappa = \frac{\|\vec{v} \times \vec{a}\|}{\|\vec{v}\|} = \sqrt{\|\vec{a}\|^2 - a_T^2} = \kappa \left(\frac{ds}{dt} \right)^2$$

11. MGM problems

- MGM problems arise when we are given some properties of a curve, but not the vector-valued parametric function generating the curve itself.
- The way of solving these problems consists of three steps:
 - Create a “fake” parametrization generating the same geometric curve
 - Find intrinsic geometric information (one or more of $\kappa, \tau, \hat{T}, \hat{N}, \hat{B}, \rho$) using this parametrization
 - Combine this information with the information provided to find the intended parametrization for the function
- It is important to take note of the direction of t . If, say, x is decreasing, it may be advantageous to use $x = -t$ for a particular curve.

12. Frenet-Serret formulas

- These are three formulas that relate \hat{T}, \hat{N} , and \hat{B} to each-other. They are as follows:

(a)

$$\frac{d\hat{T}}{dt} = v\kappa \hat{N}$$

(b)

$$\frac{d\hat{B}}{dt} = -v\tau \hat{N}$$

(c)

$$\frac{d\hat{N}}{dt} = v\tau\hat{B} - v\kappa\hat{T}$$

13. The fundamental theorem of space curves

- If $\vec{r}_1(t)$ and $\vec{r}_2(t)$ are two smooth parametric curves that are defined on the same interval, $[a, b]$, have the same speed, $v(t)$, curvature, $\kappa(t)$, and torsion, $\tau(t)$, then $\vec{r}_1(t)$ and $\vec{r}_2(t)$ are geometrically congruent. That is, their curves can be moved so that they line up with one another perfectly.

14. Angular momentum

- Angular momentum is defined as

$$\vec{H} = \vec{r} \times (m\vec{v})$$

where m is the mass of the object traced by \vec{r}

- We define a useful quantity

$$\vec{h} = \frac{\vec{H}}{m} = \vec{r} \times \vec{v}$$

- If there is no outside torque acting on the system, that is, all forces are parallel to \vec{r} , then angular momentum is conserved, and \vec{h} is constant.
- If this is the case, then all motion will be confined to a plane. This will be used as part of the setup for Kepler's laws.

15. Polar coordinates

- The polar coordinate system defines a curve using the distance from the origin as a function of the angle travelled counter-clockwise from the positive x -axis, $r(\theta)$.
- Recall that to go from rectangular coordinates to polar, use $x = r \cos \theta$, $y = r \sin \theta$.
- In vector form, rather than using \hat{i} and \hat{j} as an orthonormal basis, we use

$$\hat{r} = \frac{\vec{r}}{\|\vec{r}\|} = \langle \cos \theta, \sin \theta \rangle \text{ and } \hat{\theta} = \langle -\sin \theta, \cos \theta \rangle$$

- An easy way of remembering this is to just think of the unit circle. You want \hat{r} to point one unit in the direction of the terminal array, so just define it as you would the coordinates of the unit circle. Notice that the components of $\hat{\theta}$ are the derivative of the components of \hat{r} . You can actually define these as \hat{T} and $-\hat{N}$ for the typical parametric representation of the unit circle.
- Let $\theta = \theta(t)$. It is important to know these derivative properties and identities for objects moving in the plane:

(a)

$$\frac{d\hat{r}}{dt} = \dot{\theta}\hat{\theta}$$

(b)

$$\frac{d\hat{\theta}}{dt} = -\dot{\theta}\hat{r}$$

(c)

$$\hat{r} \times \hat{\theta} = \hat{k}$$

(d)

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

(e)

$$v = \|\vec{v}\| = \sqrt{\dot{r}^2 + r^2\dot{\theta}^2}$$

(f)

$$\left(\ddot{r} - r\dot{\theta}^2\right)\hat{r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{\theta}$$

(g) If momentum is conserved, then

$$\vec{h} = r^2\dot{\theta}\hat{k}$$

16. Kepler's Laws

- Kepler's laws are mathematical relationships that describe the orbit of the planets around the sun. They can be proved using Newtonian mechanics and rewritten as formulas. They are as follows:
 - i. The planets orbit the sun in elliptical paths, with the sun at one of the foci
 - ii. For each planet, in equal time intervals, the areas swept out by the cord from the orbiting body to the sun are equal (equal areas in equal time intervals)
 - iii. $T^2 \propto a^3$, where T is the orbital period and a is the semi-major axis of the ellipse.
- The setting for Kepler's laws is that the planets are modelled as moving points described by \vec{r} and with mass m , momentum is conserved so that all of the motion of the planets are restricted to a plane ($z=0$ in the math), and the force experienced by the planets is given by

$$\vec{F}_g = -G\frac{Mm}{r^2}\hat{r} = m\vec{a}$$

In this equation G is the gravitational constant, empirically measured, M is the mass of the sun, m is the mass of the planet, r is the distance between the planet and the sun, and \vec{a} is the acceleration of the planet. We fix the focus with the sun on it at the origin to simplify calculations.

- Kepler II: If $A(a,b)$ is the area swept out by the planet from a to b , then

$$A(a,b) = \int_{\theta(a)}^{\theta(b)} \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_a^b h dt = \frac{h}{2}(b-a)$$

This is a mathematical demonstration that A depends only on the length of the time interval

- Kepler I: the polar function $r(\theta)$ describing the distance from the sun to the planet is given by

$$r = \frac{\ell}{1 + \varepsilon \cos \theta}, \quad \text{where } \ell = \frac{h^2}{GM}$$

This is the equation of an ellipse in polar

- Note that the horizontal leftward shift of the ellipse is given by

$$c = \frac{\varepsilon \ell}{1 - \varepsilon^2}$$

The semi-major axis is

$$a = \frac{\ell}{1 - \varepsilon^2}$$

and the semi-minor axis is

$$b = \frac{\ell}{\sqrt{1 - \varepsilon^2}}$$

- The variable ε is the eccentricity of the ellipse and describes the ratio between its semi-major and semi-minor axes. We have that

$$\frac{b}{a} = \sqrt{1 - \varepsilon^2} \quad \text{and } 0 < \varepsilon < 1$$

- Kepler III: If T represents the period of the planet's orbit (how long its year is), then

$$T^2 = \frac{4\pi^2}{GM} a^3$$

This shows that $T^2 \propto a^3$ and their ratio is equal for all planets