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Rules and Reminders

1.

2.

3.

Your solutions should be turned in by 5pm EST on Thursday, November 20th.
You will submit the solutions through Gradescope. The instructions describing how
to log into Gradescope will be sent to the coaches. The deadline for submission is
clearly visible on the Gradescope site once you enroll in the course.

Please make sure you submit your work in time, as no late submissions will be
accepted. Please do not submit your work using email or in any other way. If you
have questions about Gradescope, please post them on Piazza.

You may either typeset the solutions in I¥TEX or write them by hand. We strongly
encourage you to typeset the solutions. This way, the proofs will often be more
clear, and you will be less likely to lose points. You might want to use the Solutions
Template we posted, or some of the IXTEX resources listed in point 2.

In case your solutions are handwritten, then the cover sheet (the last page of this
document) should be the first page of your submission.

Each page should have on it the team number (not team name) and problem
number. This number can be found by logging in to the coach portal and selecting
the corresponding team. Solutions to problems may span multiple pages. Please
put them in order when submitting your solutions.

You may resubmit several times before the due date, but only your final submis-
sion will be graded (and you may not submit any work after the deadline). The
last version of the Power Round solutions that we receive from your team will be
graded. Moreover, you must submit a PDF. No other file type will be graded. For
those new and interested in IATEX, check out Overleaf as well as its online guides.
If you do not know the specific command for a math symbol, check out Detexify or
TeX.StackExchange.

Do not submit identifying information aside from your team number.

4. When submitting to Gradescope, assign the solutions to the correct problems on the

Gradescope submission outline. Failure to do this WILL result in a point deduction,
as it creates a ton of extra work for us on the back-end.

. On any problem, you may use without proof any result that is stated earlier in the

test, as well as any problem from earlier in the test, even if it is a problem that
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10.

11.

your team has not solved. These are the only results you may use. In particular, to
solve a problem, you may not cite the subsequent ones.

The problems are graded separately, so you may not cite parts of your proof of
other problems. If you wish to use a lemma in multiple problems, please reproduce
the statement and proof in each problem.

. When a problem asks you to “find”, “show”, or “prove” a result, a formal proof is

expected, in which you justify each step you take, either by using a method from
earlier or by proving that everything you do is correct. When a problem asks you
to “explain”, an informal explanation suffices.

All problems are numbered as “Problem x.y.z”, where x.y is the subsection number,
and z is the the number of the problem within the subsection. Each problem’s
point value is stated on the problem, and can also be found on the cover sheet.

. Teams whose members use English as a foreign language may use dictionaries for

reference.

. You may NOT use any references, such as books or electronic resources,

except those specified in points 2 and 8. You may NOT use computer
programs, calculators, AI chatbots, or any other computational aids.

You may ask questions about the test on our Piazza forum. On the forum, you
may ask a public or private question. If you ask a public question, all other teams
will be able to see it. Therefore, if a public question reveals all or part of
your solution to a Power Round question, your team’s Power Round
score will be penalized severely. If your question might reveal aspects of your
solution, please ask it as a private question. On the other hand, if you are sure
that your question does not spoil anything, then we encourage you to make your
question public, so that everybody can see it.

We will post important clarifications on Piazza, and these clarifications will also be
emailed to coaches.

Communication with humans outside your team of 8 students about
the content of these problems is prohibited. Of course, asking questions on
Piazza is the exception, and is allowed.
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Introduction and Advice

In this Power Round, we will dive into the world of axiomatic set theory, which is
the rigorous foundation for all of mathematics. We will ask and answer fundamental
questions, such as “what is a set?” If you think this question is trivial, it is not: if you're
not careful, you run into all kinds of logical paradoxes.

Building on the foundations, we will investigate the famous Continuum Hypothesis,
which essentially asks: how large is the set R of real numbers? The answer turns out to
be quite surprising: there is no way for us to know for sure what it is!

A large part of the difficulty in this Power Round will arise from the rigor required
when working with the formal concepts. Since we need to put everything on completely
solid footing, things that might seem obvious can often be quite nontrivial to prove. So,
it is important to make sure that your logic is airtight.

Here is some further advice with regard to the Power Round:

e Read the text of every problem! Many important ideas are included in the
problems and may be referenced later on. In addition, some of the theorems you
are asked to prove are useful or even necessary for later problems. Even if you
don’t solve a problem, you can assume its results for future problems.

e Make sure you understand the definitions! A lot of the definitions are not
easy to grasp; don’t worry if it takes you a while to fully understand them. If you
don’t, then you will not be able to do the problems. Feel free to ask clarifying
questions about the definitions on Piazza.

e Don’t make stuff up! On problems that ask for proofs, you will receive more
points if you demonstrate legitimate and correct intuition than if you fabricate
something that looks rigorous just for the sake of having “rigor”.

e Check Piazza often! Clarifications will be posted there. If you have a question,
it is possible that it has already been asked and answered in a Piazza thread. If
not, you can ask it, as long as you don’t ask a public question that reveals any part
of your solution to a problem.

e Don’t cheat! As stated in Rules and Reminders, you may NOT use any references
such as books or electronic resources (unless otherwise specified). If you cheat, you
will be disqualified and banned from PUMaC, your school may be disqualified, and
relevant external institutions may be notified of any misconduct.

Good luck, and have fun!
— Zongshu Wu, Power Round Czar

We would like to acknowledge and thank many individuals and organizations for their
support; without their help, this Power Round (and the entire competition) could not
exist. Please refer to the solutions for the Power Round for full acknowledgments and
references.
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Notation
o iff: if and only if.
e —: —p means “p is false”.

e A: o A1) means “p and 1)”.

V: V1) means “p or ¢”.

—>: = 1 means “p implies 1)”.

o > p <= Y means “p iff Y”.

V: Vz p(z) means “p(x) holds for all z”.

3: Jz p(x) means “p(z) holds for some z”.

e x € X means “z is an element of X” or “X contains z”.

(Vz € X) ¢(x) means Vz (x € X = ¢(x)), “p(x) holds for all x € X”.

(3x € X) () means Iz (z € X A ¢(x)), “p(z) holds for some x € X”.

e Jl: Jlz p(z) is short for Iz (¢(z) AVy (p(y) = = =1y)), “p(z) holds for exactly
one z”. Similarly, (3lz € X) ¢(x) is short for Iz (z € X A p(z)), “p(z) holds for
exactly one x € X”.

e C: x Cyisshort for (Vze€x)z €y.

{F(z) € X : p(x)} is short for {y € X : Jx (y = F(x) A p(x))}.

A Note on Rigor

In this Power Round, you may freely use any of the rules of logic, so there is no need to
be pedantic about that. Furthermore, for problems that ask you to prove things about
meta-mathematical objects (such as formulas), you may use informal arguments. After
all, we do not give rigorous definitions for meta-mathematical objects, so being rigorous
in your proofs is not even possible.

However, you must be very rigorous when proving things about sets. This is especially
important in the first section, where we build everything up from the foundations. You
are not allowed to write things like {z} or {z,y,2} or X x Y before they are introduced
(unless you define them yourself and prove that they work)!
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1 Zermelo-Fraenkel Set Theory (9 problems, 50 points)

At first glance, the mathematical concept of a set could not be simpler: it is simply any
collection of things. However, after some careful thought, things start to break down. In
1901, Bertrand Russell considered the set

R={x:xz ¢z},

consisting of all sets that don’t contain themselves. So, does R contain itself? Well, by
definition, R contains R if and only if R does not contain R! This paradox, known as
Russell’s paradoz, indicates that something is wrong with our naive notion of sets.

The only way to resolve this paradox is to declare that R does not exist — that there is
no set consisting of precisely those sets that don’t contain themselves. In other words,
we need to part ways with the idea that any collection of things can be a set.

Since we can’t make the assumption that any collection forms a set, we instead make
a different (and much more complicated) list of assumptions in order to work with sets.
These are known as the axioms of Zermelo-Fraenkel set theory (ZFC), named after Ernst
Zermelo and Abraham Fraenkel, who developed it in the early 20th century.

1.1 Logical Formulas (10 points)

Before we get started, we need to say some words about how mathematical logic works
in the world of axiomatic set theory. Read this part carefully!

In set theory, sets are the only kind of mathematical object. Everything is a set. To
talk about sets, we use formulas.

Definition 1.1.1 — A formula (in set theory) is a statement about sets, involving
some number of variables, which represent sets. If a formula explicitly depends on a
variable, then the variable is called free. Otherwise, the variable is called bound. If a
formula has no free variables, then it is called a sentence.

The expression ¢(x1,x2,. .., T,) refers to some formula whose free variables are
among i, x,...,Ty. (It might be the case that some of the variables z; are bound,
or do not occur in the formula at all.)

By itself, this definition probably doesn’t make a whole lot of sense, so we give many
examples to illustrate what it means.

e z € y is a formula with two free variables,  and y. The meaning of this statement
depends on what sets we substitute in place of x and y.

e Jz (z =y) is a formula with one free variable, y, and one bound variable, z. The
meaning of this statement depends on y, but it does not depend on z, because x is
just a dummy variable without an actual value assigned to it. Instead, we say that
we are quantifying over x using the symbol 3.

e Vz (—x € z) has no free variables, so it is a sentence. Similarly, we are quantifying
over z using the symbol V.

o r € yAVx(y € x) is... erm... is x free or bound?? It is free in its first occurrence,
but bound in its later occurrences. Such cursed situations are technically allowed
in logic, but for obvious reasons, it is a very bad idea to write formulas like this, so
we will assume that this never happens.



PUM..C 1~

Any formula can be written in terms of the symbols = (equality), € (set membership),
and the logical symbols =, A, V, =, <V, 3 defined in the Notation section. Usually, we
will abbreviate formulas using other symbols, such as C. For instance, we can abbreviate
(Vzezx)zeyasaxz Cy.

Notice that when performing such abbreviations, bound variables can disappear, but
the free variables don’t change. In the example above, after we abbreviate the formula,
the bound variable z disappears, but the free variables are x and y regardless.

Problem 1.1.1 (10 points)

Show that every formula is equivalent to one that only uses =, €, -, A, 3.

Formulas are not considered mathematical objects in set theory, because they are not
sets! In particular, in a formula, we can never quantify over a formula, so something like
“there exists a formula such that ...” cannot be written as a formula. Instead, formulas
are meta-mathematical objects — overlords that govern the mathematical world of sets.

1.2 The Axioms of ZFC (30 points)

We now describe the axioms of ZFC, a list of sentences that we assume when we prove
anything about sets. They are written in natural language here, but it is possible (you
can try) to write them using only =, €, -, A, V, =, <, V¥, 3. But of course, that would be
quite cumbersome, so we won’t do that here.

Axiom (Extensionality)

Two sets x,y are equal iff z € z <= 2z € y for any set z.

Axiom (Pairing)

Given two sets x,y, there exists a set {z,y} such that z € {z,y} iff z=2x or z = y.

~
Axiom (Union)
Given a set X, there exists a set | J X such that y € |J X iff y € = for some z € X.

-

~

Axiom (Power Set)
Given a set X, there exists a set P(X) such that A € P(X) iff A C X.

\_ J
Axiom (Separation)
Let ¢(z,p1,...,pn) be a formula. Given a set X and some parameters pi, ..., pn,

there exists a set Y such that z € Y iff z € X and ¢(x,p1,...,p,). This set YV is
denoted {x € X : o(z,p1,...,pn)}

The axiom of separation is not a single axiom; instead, it is an axiom schema, which
means that it consists of infinitely many axioms, one for every formula o(z,p1,...,pn).
(In particular, ZFC has infinitely many axioms.)
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Before we introduce the rest of the axioms (three axioms and one axiom schema), we
take some time to see what we can do already with what we have.

Problem 1.2.1 (5 points)

Given a nonempty set X, prove that there exists a set (| X such that y € (| X iff
y € x for all x € X.

Problem 1.2.2 (5 points)

Given two sets z,y, prove the existence of the following sets:
(a) The set {z}, such that z € {z} iff z = z;
(b) The set x Uy, such that z € z Uy iff z € z or z € y;

(c) The set x Ny, such that z € x Ny iff z € z and z € y.

In particular, given x1,...,z,, we may form the set {z1,...,2,} ={z1} U--- U{x,},
such that y € {z1,...,2,} iff y = z; for some i.

Next, we formally define the notion of ordered pairs in terms of sets. This definition is
due to Kazimierz Kuratowski.

Definition 1.2.1 — For two sets z,y, define the ordered pair (x,y) = {{z},{z,y}}.

Problem 1.2.3 (5 points)
Prove that (z,y) = (z,w) iff x = z and y = w.

Problem 1.2.4 (5 points)

Given two sets X, Y, show that we can form the set X x Y of ordered pairs (z,y)
where x € X and y € Y, called the Cartesian product of X and Y.

Ordered pairs allow us to define what relations and functions are.

Definition 1.2.2 — A relation is a set R consisting of ordered pairs. We usually
write z Ry as a shorthand for (x,y) € R.

A relation f is a function if, for any set z, there is at most one set y such that
(z,y) € f. If such a y exists, then we write f(z) = y.

Problem 1.2.5 (5 points)

Let R be a relation. Show that we can form the sets
dom(R) ={z:3Jy(z,y) € R} and ran(R)={y:3Jz(x,y) € R},

called the domain and range of R, respectively.
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Definition 1.2.3 — A relation R is said to be on X if R C X x X. A function f is
said to be on X if dom(f) = X. A function f is said to be from X to Y, written
f:X =Y, if dom(f) = X and ran(f) C Y.

Definition 1.2.4 — A function f : X — Y is called injective / surjective [ bijective,
or a(n) injection/surjection/bijection, if for any y € Y, there is at most one/at least
one/exactly one z € X such that f(z) =v.

Definition 1.2.5 — Let f be a function. The restriction of f to X is the function
f1X ={(z,y) € f:x € X}. The image of X under f is f"X =ran(f[X).

These definitions and results might be familiar from “normal math” — all we did was
make everything rigorous using our set-theoretic framework. We now introduce the rest
of the axioms of ZFC.

Axiom (Infinity)
There exists a set @ that contains nothing. Furthermore, there exists a set I such
that @ € I, and if z € I, then x U {x} € I.

Axiom (Replacement)

Let o(z,y,p1,...,pn) be a formula, and fix some parameters py, ..., p,. If

So(xay7p17"')pn) /\(P(%vala-'-’pn) — y ==z

holds for all z,y, z, then given any set X, there exists a set Y such that y € Y iff
o(z,y,p1,...,pn) for some z € X.

/)

Axiom (Regularity)

Any nonempty set X contains an element z, called an €-minimal element, such that
y ¢ x for any y € X.

Axiom (Choice)

Let X be a set. If all elements of X are nonempty, then there exists a function f on
X, called a choice function, such that f(z) € x for all z € X.

Just like the axiom of separation, the axiom of replacement is also an axiom schema
consisting of infinitely many axioms.

Problem 1.2.6 (5 points)

Prove that no set contains itself, and no two sets contain each other.
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1.3 Classes (10 points)

Not every collection of sets is a set. As you have already seen in the previous problems,
when we want to define a set like X X Y, we can’t just say

XxY={(z,y):ze XNyeY}

instead, we need to prove that such a desired collection of sets actually exists using the
axioms of ZFC. But what if we still want to talk about arbitrary collections of sets? For
this, we introduce the notion of a class.

Definition 1.3.1 — Let ¢(z,p1,...,pn) be a formula. Given parameters py, ..., pn,
we shall sometimes write x € {z : p(x,p1,...,pn)} in place of (z,p1,...,pn). The
expression {z : p(z,p1,...,pn)} is called a class.

Intuitively, a class C = {x : ¢(x,p1,...,pn)} is the “collection” of sets satisfying the
property ¢(x,p1,...,pn). Classes are not sets; we introduce them simply because they
are a convenient and intuitive notational shorthand.

Definition 1.3.2 — Let C and D be two classes. We say that C' is a subclass of D,
denoted C' C D, if x € C = x € D for all x. We say that C' is equal to D, denoted
C=D,ifxeC <= zeD forall x.

Definition 1.3.3 — A class C is a set if, for some set X, we have C = {z : z € X}
(that is, x € C <=z € X for all z). A class that is not a set is called a proper class.

By the axiom of extensionality, if such a set X exists, then it must be unique. Notice
that saying “C'is a set” is an abuse of terminology — classes are not actually sets! We do
this because it just makes everything more convenient. If you pay attention to what you
are doing, then there shouldn’t be any issues.

In fact, if C' = {x : x € X}, then we will pretend as if C' and X are the same thing.
Under this convention, every set X “is” a class (namely, the class {z : 2 € X}), and we
can rephrase the axiom of separation as: any subclass of a set is a set.

Definition 1.3.4 — The universe is the class V = {z : = z} of all sets.

Problem 1.3.1 (5 points)

Show that the universe V is a proper class.

Many (but not all!) of the concepts we defined for sets work for classes as well. You
should be able to guess how the definitions go before looking at them:

Definition 1.3.5 — Let C and D be classes. Define the following classes:

CuD={z:2e€CVvzxeD}, UC={z:(3X eC)xe X},
CNnD={zx:2€CArzxeD}, NC={z: VX elO)ze X},
CxD={(z,y):x € CAhye D}.

10
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In fact, if C' is nonempty, then (| C' is always a set. This can be proved similarly to
Problem 1.2.1. (For the empty class, we have (@ =V.)

Definition 1.3.6 — A class relation is a class of ordered pairs. For a class relation
R, we write x Ry to mean (x,y) € R. A class relation on a class C is a subclass of
C x C. Given a class relation R, define the classes

dom(R) ={z: 3y (z,y) € R} and ran(R)={y: 3z (z,y) € R}.

A class relation F'is a class function if, for any set x, there is at most one set y
such that (z,y) € F. A class function F is on a class C if dom(F) = C, and from
C to D, written F' : C — D, if dom(F') = C and ran(F') C D. The restriction of a
class function F' to a class C' is the class function F[C = {(z,y) € F : x € C'}, and
the image of C under F' is F"'C = ran(F[C).

The following problem is a convenient rephrasing of the axiom of replacement.

Problem 1.3.2 (5 points)

Let F be a class function, and suppose that dom(F’) is a set. Prove that ran(F) is a
set, and conclude that F' is also a set.

1.4 Philosophical Discussion: The Meta Theory

In the previous problems, you used the axioms of ZFC to prove many statements — that
is, sentences. However, if you look carefully, you might notice that some of the problem
statements aren’t sentences. Notably, Problem 1.3.2 starts by picking an arbitrary class
function F', which is not allowed in a sentence (as classes are not sets). So, what did you
actually do by solving the problem?

Recall that the axioms of separation and replacement are actually axiom schemata:!
they consist of infinitely many axioms. Similarly, we may think of solving Problem 1.3.2
as proving infinitely many sentences at once: for every class F', you prove the sentence
that if F' is a class function and dom(F’) is a set, then ran(F') and F are sets.

That is, the statement of Problem 1.3.2 is a meta-mathematical statement, instead
of a mathematical statement (i.e. a formula). To clarify this distinction, we introduce
the terms base theory and meta theory. Sets live in the base theory, and when we prove
sentences, we are working in the base theory. In contrast, meta-mathematical objects,
like formulas or classes, live in the meta theory, and reasoning about them constitutes
working in the meta theory.

For most problems in this Power Round, the distinction between the base theory and
the meta theory can be mostly handwaved away. However, if you are not careful, you
might still make mistakes! It is especially important to keep this in mind in the later
sections, as there will be a blend of mathematical and meta-mathematical concepts.

Finally, if you are worried about the abuse of terminology where we say that certain
classes “are” sets, rest assured that this will not cause any problems. Every time such an
abuse of terminology occurs, it is always possible to rewrite things such that the abuse
does not occur, often with the expense of making everything more cumbersome.

!The plural form of “schema”.

11
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2 Ordinals (17 problems, 180 points)

Ordinals are one of the most important concepts in set theory. Intuitively, they give us a
way of counting past infinity. The natural numbers 0,1,2, ... are ordinals,? but beyond
that, we have the ordinal w, the smallest infinite ordinal. After that, we have w + 1, then
w + 2, and so on, then w + w = w - 2, and on and on and on...

As sets, each ordinal « is, intuitively, the set of ordinals smaller than «. For instance,
since there are no ordinals less than 0, we have 0 = @. Next, we have 1 = {0} = {@},
and 2 ={0,1} = {2,{2}}, and then w ={0,1,2,...}, and w+1 ={0,1,2,...,w}, and
so on and so forth. This informal idea will be made rigorous below.

2.1 The Basics of Ordinals (75 points)

Definition 2.1.1 — A class x is transitive if any element of x is a subclass of x.

In other words, if z is transitive, then z € y and y € x imply z € z. For example, the
sets @ and {@, {2}, {{2}}} are transitive, but {{&}} is not transitive.

Definition 2.1.2 — A set « is an ordinal if « is transitive, and every element of «
is also transitive. The class of ordinals is denoted Ord.

For example, & and {@,{@}} are ordinals, but {&, {2}, {{@}}} (a transitive set) is
not an ordinal, because it contains an element {{@}} which is not transitive.

Problem 2.1.1 (5 points)

Show that any element of an ordinal is an ordinal.

Problem 2.1.2 (10 points)

Let C be a class of ordinals. Show that if C' is a set, then |JC' is an ordinal, and
show that if C' is nonempty, then (| C' is an ordinal. Conclude that if & and g are
ordinals, then o U 8 and o N B are also ordinals.

Problem 2.1.3 (20 points)

Let a be an ordinal, and let x,y be distinct elements of «. Prove that either x € y
or y € x. (Hint: use the axiom of regularity.)

Problem 2.1.4 (15 points)
Let o and B be ordinals. Prove that o C S iff a € 8 or a = £.

Problem 2.1.5 (10 points)
Let o and 8 be distinct ordinals. Prove that either o € 8 or § € a.

2In set theory, 0 is considered a natural number.

12
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Using the previous two problems, we can easily see that for any two ordinals a and
(not necessarily distinct), we have o C 5 or § C a.

Definition 2.1.3 — Let « and § be ordinals. We write a < 8 or 8 > « for a € §3,
and write a« < S or > « for a C §.

The results that we have shown so far imply that this method of comparing ordinals
works exactly as you’d expect it to. For example, we have a < fiff a < fV a = § iff
a ¥ . We can also combine inequalities: for instance, if & < 8 < 7, then a < 7, and if
a < B <7, then a <. From now on, you may freely use the basic properties of ordinal
comparison without proof.

Problem 2.1.6 (10 points)
Let C be a class of ordinals. Show that

(a) If C is a set, then | C is the smallest ordinal which is greater than or equal to
all elements of C.

(b) If C is nonempty, then () C is the smallest element of C.

Definition 2.1.4 — Let C be a class of ordinals. If C' is a set, then its supremum is
supC = |JC. If C is nonempty, then its minimum is min C = (C.

The axiom of regularity implies that any nonempty set of ordinals contains a smallest
element, but the previous problem generalizes this statement to any nonempty class of
ordinals, and also explicitly tells us what the minimum is!

Definition 2.1.5 — The successor of an ordinal « is the set S(a) = a U {a}.

Problem 2.1.7 (5 points)

Prove that S(«) is the least ordinal greater than «.

Using the successor function, we can define

0 =,

1=5(0) = {=},

2=15(1) = {2,{7}},

3=15(2) ={9,{2},{2,{7}}},

4=503) =1{9,{2},{2,{9}},{2, {2}, {2, {2}}}},

and so on. It quickly becomes unwieldy to expand everything out completely: using the
notation above, writing the number n in full requires 2" — 1 symbols. Figure 1 shows
how tedious it can be even for relatively small numbers.

Warning: this is not a rigorous definition of a natural number! You might think that
we can define a natural number as “the result of applying S finitely many times to 07,
but this is circular logic, because we need natural numbers in order to formalize what
“finite” means. In the next subsection, we will define natural numbers properly.
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5= | &= (|| &= | == || 8= | == ||| 8= | ==
[0 (=R
[5]e | B]a || [E]e | E]= [6]o [ [E]a || [E]e | E]=
[B]a | [B]= [B]a | []a [8]a | [B]a [8]a | [B]a
[El=] =]
[E]e | [E]le || [E]e | E]e [6]o [ [E]a || [E]e | E]=

Figure 1: A visual representation of the number 8.

2.2 Induction and Recursion (60 points)

In this subsection, we will define the natural numbers, and rigorously justify induction
and recursion. In “normal” math, we say “recursive definition” and “inductive definition’
interchangeably, but in fact, recursion does not trivially follow from induction, and we
need to do some work to justify recursion. (See Problem 2.2.6.)

)

Definition 2.2.1 — An ordinal « is called a successor ordinal if « = S(f) for some
ordinal 8. A limit ordinal is a nonzero ordinal which is not a successor ordinal.

The ordinal 0 = @ is the only ordinal which is neither a successor nor a limit ordinal,
just like how 1 is the only positive integer which is neither prime nor composite.

Problem 2.2.1 (5 points)

Show that a nonzero ordinal « is a limit ordinal iff @ = sup{f : 8 < a}. (Note that
{B: B < a} is another way of writing the set a.)

Definition 2.2.2 — An ordinal n is a natural number if every ordinal k less than or
equal to n is either 0 or a successor ordinal.

It is not hard to see that if n is a natural number, then S(n) is a natural number, and
every k < n is a natural number. We now prove that mathematical induction works.

Problem 2.2.2 (10 points)

Let C be a class. Suppose that 0 € C, and if n € C for a natural number n, then
S(n) € C. Prove that C contains all natural numbers.

Problem 2.2.3 (10 points)

Prove that we can form a set w such that n € w iff n is a natural number, and show
that w is the least limit ordinal.

In fact, we can prove a vast generalization of the principle of mathematical induction,
known as transfinite induction, which works for all ordinals.
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Problem 2.2.4 (5 points)

Let C be a class. Suppose that if « is an ordinal, and 8 € C for every 8 < «, then
«a € C. Prove that C' contains all ordinals.

Often, transfinite induction is split into three cases, depending on whether « is 0, a
successor ordinal, or a limit ordinal.

Problem 2.2.5 (10 points)
Let C be a class. Suppose that

e 0 e
o If o € C, then S(a) € C;
e If o is a limit ordinal, and 8 € C for all 8 < «, then a € C.

Prove that C contains all ordinals.

We can use transfinite induction to recursively define class functions on Ord. If we
want to define a class function F' on Ord, then it suffices to define F() in terms of the
values of F(B) for f < a. This is known as transfinite recursion, and the next problem
will ask you to justify it rigorously.

Problem 2.2.6 (15 points)

Let G be a class function on the universe V. Find a class function F' on Ord such
that F(a) = G(F'[«) for every ordinal «, and show that any two such class functions
are equal. (Note that F'[a is a set by Problem 1.3.2.)

Just like transfinite induction, we usually split transfinite recursion into three cases:
zero, successor, and limit. To give a simple example, let « be an ordinal, and let G, be
the class function on V defined as

Q if f=0,

S(f(8)) if f:5(8) = Ord,
sup(ran(f)) if f: /5 — Ord for a limit ordinal 3,

2] otherwise.

Ga(f) =

Applying transfinite recursion, we get a class function F, on Ord such that F,(0) = «,
Fo(S(B)) = S(Fu(B)), and Fo(B) = sup{F,(7) : v < B} for limit ordinals . Finally, we
denote o + 8 = F,(8). We've just defined ordinal addition!

This definition may be cleanly summarized as follows:

Definition 2.2.3 — Define the sum « + 8 of two ordinals recursively as
e a+0=aq,
o a+5(8)=S(a+p),

e o+ [ =sup{a+y:vy<p},if §is a limit ordinal.

15
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Let’s look at some examples. Firstly, we have
1+1=14+50)=S5(1+0)=5(1)=2.

And in general, we have a + 1 = S(«a), and oo + 2 = S(S(«v)), etc., by definition. These
facts are intuitive, but sometimes, weird things can happen. For instance,

ltw=sup{l+n:n<w}=w#w-+l1,

so ordinal addition is not commutative! (Ordinal addition is associative: (o + ) +~v =
a+ (B + ) for all ordinals «, /3,7, but this is quite tricky to prove.)

Problem 2.2.7 (5 points)

Prove that if § is a limit ordinal, then « + § is also a limit ordinal.

Similarly, we can define ordinal multiplication.

Definition 2.2.4 — Define the product « - 8 of two ordinals recursively as
e a-0=0,
e a-SB)=a-p+aq,

e a-fB=sup{a-vy:v <}, if B is a limit ordinal.

For example, we have a- 1 =a-5S(0) =a-0+a=0+a =a. Next, a-2 =a+ a,
and then « -3 = o+ a + «a, and so on, by definition.

Just like ordinal addition, ordinal multiplication is associative: (a-3)-v=a- (8- 7),
but not commutative: we have w-2 =w + w, but 2w = sup{2n : n < w} = w. Ordinal
multiplication also satisfies a distributive law: a - (8 +v) = a- 8 + « - 7. However, it is
not always true that (a« + ) -y =a-v+5-v. (Takea=F=1and vy =w.)

We can go further: ordinal exponentiation may be defined in a similar way as ordinal
multiplication. But we won’t go into that in this Power Round.

2.3 Well-Orders (45 points)

In addition to letting us “count past infinity”, ordinals are useful in set theory because
they allow us to quantify a special kind of ordering, called a well-order.

Definition 2.3.1 — Let X be a set. A relation < on X is a partial order if
(1) x < z is false for every z € X, and
(2) x <y and y < z implies = < z for all z,y,z € X.
The relation < is a well-order if, in addition, we have
3) z<yorz=yory<xzforall z,y € X, and
(4) Any nonempty A C X contains some m such that = £ m for all z € A.

A poset (short for partially ordered set) is a pair (X, <), where < is a partial order
on X. A poset (X, <) is a well-ordered set if < is a well-order on X.
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For example, consider the relation {(4, B) € P(X) x P(X): A C B} on P(X), which
we will abbreviate as just “C”. Then, (P(X), Q) is a poset. But, if X has more than 1
element, then C is not a well-order on P(X), because it fails condition (3).

For another (very important) example, let o be an ordinal, and consider the relation
{(z,y) € @ x a: x € y} on «, which we will abbreviate as just “€”. Then, the problems

in Section 2.1 tell us that (o, €) is a well-ordered set.

Definition 2.3.2 — Let (X, <x) and (Y, <y) be two well-ordered sets. A function
f: X — Y is called an order-isomorphism if it is a bijection, and for all z,y € X, if
x <x vy, then f(z) <y f(y). If there exists an order-isomorphism f: X — Y, then
we say that (X, <x) and (Y, <y) are isomorphic, denoted (X, <x) = (Y, <y), or, if
the context is clear, simply X £ Y.

)

You can think of “isomorphic” as meaning “basically the same”. For instance, consider

the following two well-ordered sets:

(X? <X) = ({a7 b, C}: {(a7 b): (a7 C)v (b> C)})>

where a <x b <x ¢, and

Y, <y) = ({p, a7}, {(p, @), (r,p), (. 9)}),

where r <y p <y ¢q. Then, the structures of the two well-ordered sets are pretty much
identical: in both cases, we have a chain of three elements in increasing order. Indeed, the
function f: X — Y given by f(a) =7, f(b) = p, and f(c) = ¢ is an order-isomorphism,
and thus, the two well-ordered sets are isomorphic.

Problem 2.3.1 (10 points)
Let (X, <x), (Y,<y), and (Z, <z) be well-ordered sets. Show that

(a) X = X.
(b) If X 2V, then Y & X.

(c) f X =Y and Y = Z, then X = Z.

Problem 2.3.2 (15 points)

Let (X, <) be a well-ordered set. Prove that there exists a unique ordinal «, called
the order type of (X, <), such that (X, <) = (¢, €).

Problem 2.3.3 (20 points)

Prove that for any set X, there exists a bijection f from X to some ordinal «, and
conclude that there exists a well-order on X. (Hint: use the axiom of choice.)

This problem establishes the well-ordering theorem: every set can be well-ordered. It
was first proven by Ernst Zermelo in 1904. The axiom of choice (often abbreviated as
ACQ) is crucial in proving the well-ordering theorem. If your solution didn’t use it, then it
is wrong! In fact, if we work in ZF, which is ZFC without choice, then we can prove that
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AC is equivalent to the well-ordering theorem. (Problem 2.3.3 establishes one direction:
AC implies the well-ordering theorem. You are welcome to try the other direction, but
we won’t need this result.)

Many set theorists see the well-ordering theorem as somewhat unintuitive. It states
that all sets can be well-ordered, including, for instance, R.> How would you well-order
R? It’s not something you can write down explicitly (without using AC), and the field of
descriptive set theory, which studies R from a set-theoretic perspective, tells us that such
a well-order would have bizarre properties. There is a famous joke by Jerry Bona:

The axiom of choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?

(Zorn’s lemma is another result equivalent to the axiom of choice, and it is used in many
areas of mathematics, but it has a rather complicated statement.)

2.4 Philosophical Discussion: Natural Numbers

In this section, we spent a lot of effort defining what natural numbers are, and making
sure that the logic is completely airtight. However, if you look carefully, you may notice
that we have actually been secretly using natural numbers since the very beginning of
this Power Round! For instance, when we wrote “let p(x,p1,...,p,) be a formula”, we
were invoking the concept of natural numbers, as n is a natural number. Did we commit
the error of using a concept before defining it?

Don’t worry — we didn’t. When we write something like ¢(x, p1, ..., pp), the number
n lives in the meta theory, instead of the base theory. It is a “meta natural number”, if
you will. So, we were using meta natural numbers in the meta theory, before defining
natural numbers in the base theory. This is not circular reasoning!

But things still feels a bit suspicious. If we need meta natural numbers to formalize
natural numbers, then we can ask: where do the meta natural numbers come from? We
would need a “meta meta theory” to formalize the meta natural numbers, and a “meta
meta meta theory” to formalize that, and so on. Turtles all the way down. And the issue
is not just with natural numbers. If we want to formalize logic, then we would need a
logical system in which to do so.

It seems that an infinite regress is unavoidable. In practice, logicians and set theorists
deal with this problem by ignoring it. After all, we have to start somewhere. Instead
of getting stuck in a fruitless cycle of formalization, we choose the meta theory as our
starting point, and take it for granted. (In particular, there will be no such thing as a
“meta meta theory”.) From there, we can specify the basic rules of logic, and list out the
axioms of the base theory ZFC.

In fact, we can go further, and formalize a copy of ZFC inside the base theory! To do
logic within our set-theoretic framework, we encode each formula ¢ as a natural number
"o, called the Gddel number of ¢ (named after Kurt Godel), and formalize all of the
rules of logic within the base theory. Finally, we write down the Godel numbers of the
axioms of ZFC. The resulting set of Godel numbers is called the coded theory.

The coded theory can be thought of as a copy of ZFC, inside the base theory ZFC, and
one level “below” the base theory. In an abuse of notation, the coded theory is usually
also denoted ZFC, but we shall write ZFC,. to avoid confusion.

3We won’t give a precise definition of R in this Power Round.
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3 Cardinals (19 problems, 180 points)

Infinite sets behave quite differently than finite sets, as famously illustrated in David
Hilbert’s Grand Hotel. Imagine a hotel with infinitely many rooms, numbered 0,1,2, ...,
each occupied by a guest, say, Room n is occupied by Guest n. The hotel is full, and yet,
it can accommodate more guests: by moving Guest n to Room n + 1 for all n, Room 0
is left vacant for a new guest, say Guest w, to move into. In other words, the two sets
w={0,1,2,...} and w+1=1{0,1,2,...,w} have the same “size”, in some sense, even
though w is a proper subset of w + 1.

But are there any infinite sets that have a larger size than w? In 1874, Georg Cantor
answered this question in the affirmative: he proved that the set R of real numbers has
strictly more elements than w. If a guest for every real number came to Hilbert’s Hotel,
then the hotel would not be able to accommodate everyone.

More precisely, the size of a set X is measured by its cardinality |X|, a special kind of
ordinal called a cardinal. For example, the cardinality of {a,b, c} is 3, because {a, b, c}
has 3 elements, and the cardinalities of w and w + 1 are 8y = w, which is the smallest
infinite cardinal. After Ny, the next cardinal is Ny, and then No, and after infinitely many
of these, we reach X,,. In fact, there is a cardinal R, for every ordinal a.

All of the informal ideas above will be made fully rigorous in what follows.

3.1 The Basics of Cardinals (60 points)

Definition 3.1.1 — Two sets X and Y are equinumerous, denoted X = Y, if there
exists a bijection f: X — Y.

For example, we have already seen that w and w + 1 are equinumerous. It is also not
hard to show that w and w - 2 are equinumerous: we can define a bijection f:w- -2 > w
via f(n) =2n and f(w+n)=2n+ 1, where n < w.

Problem 3.1.1 (5 points)
Let X,Y, Z be sets. Show that

(a) X ~ X.
(b) If X =Y, then Y =~ X.

(c) f X~Y and Y ~ Z, then X ~ Z.

The well-ordering theorem (Problem 2.3.3) tells us that any set X is equinumerous to
at least one ordinal, so we can use ordinals to measure the sizes of sets.

Definition 3.1.2 — The cardinality of a set X, denoted | X]|, is the smallest ordinal
a such that X ~ a. An ordinal x is a cardinal if |k| = k (in other words, if  is not
equinumerous to a smaller ordinal).

A set X is finite if | X| < w and infinite if | X| > w. An infinite set X is countable
if | X| = w, and uncountable if | X| > w.

The cardinality of a set is always a cardinal. Indeed, we have X ~ |X|, so if | X| were
equinumerous to some smaller ordinal «, then X would also be equinumerous to «, but
this would contradict the definition of | X|.
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Problem 3.1.2 (5 points)

Prove that every infinite cardinal is a limit ordinal.

Problem 3.1.3 (20 points)
Let X and Y be sets. Prove that

(a) |X| < |Y] iff there exists an injection f: X — Y.
(b) |X| > |Y| iff there exists a surjection f: X — Y.

(c) |X|=1Y] iff there exists a bijection f: X — Y (that is, X = Y).

Problem 3.1.4 (10 points)

Prove that every natural number is a cardinal.

Problem 3.1.5 (5 points)

Prove that if X is a set of cardinals, then sup X is a cardinal. In particular, show
that w is a cardinal.

The previous problem ensures that countable sets exist: the set w is countable, since
|w| = w. Of course, w+ 1 and w - 2 are also countable. The existence of uncountable sets
follows from Cantor’s theorem, named after Georg Cantor.

Theorem 3.1.3 (Cantor)
If X is a set, then |X| < |P(X)].

Proof. Suppose for the sake of contradiction that |X| > |P(X)|. Then by Problem 3.1.3,
there exists a surjective function f : X — P(X). Now consider the set

A={zeX:z ¢ f(x)} € P(X).
We have A = f(x) for some = € X. But then x € A iff v ¢ A, a contradiction. O

In particular, P(w) is uncountable. It is not too hard to show that R is equinumerous
to P(w), so R is also uncountable. (Our proof of this is not Cantor’s original 1874 proof;
instead, it is essentially equivalent to another proof he gave in 1891.)

Cantor’s theorem implies that there is no largest cardinal: indeed, if k is a cardinal,
then the cardinal |P(k)| is always strictly larger than x. Thus, we define:

Definition 3.1.4 — Define the aleph numbers X, (also denoted w,) recursively as
o NO = W,

e N, is the smallest cardinal greater than N,

o N, =sup{Ng: [ < a}, if a is a limit ordinal.
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Problem 3.1.6 (15 points)

Prove that every infinite cardinal is equal to X, for some ordinal .

3.2 Cardinal Arithmetic (60 points)

Before we begin, here is a basic definition.

Definition 3.2.1 — Let I be a set and C be a class. A family of elements of C,
indexed by I, is a function z : I — C. In this context, we write x; in place of x(%)
and (z;);er in place of x.

In elementary school, the basic operations of arithmetic are introduced by studying
what we would call the cardinality of finite sets. For example, the equality 1 +1 = 2 is
usually interpreted to mean that if two disjoint sets {a} and {b} have cardinality 1, then
the union {a} U {b} = {a, b} has cardinality 2. Building on this idea, we define the sum
of any number of cardinals.

Definition 3.2.2 — Let (X;);cr be a family of sets. Their union | J;c; X; is defined
as Jran(X) = {z : (i € I) z € X;}, and their disjoint union | |;c; X; is defined as
the union (J;c; X; x {i}. If we only have two sets X,Y’, then we write their disjoint
union as X UY = (X x {0}) U (Y x {1}).

For a family (k;)icr of cardinals, their sum ), ; x; is defined as “_|i€[ m‘. If we
only have two cardinals x, A, then we write their sum as k + A = |k L A|.

Intuitively, the disjoint union takes a family (X;);es of sets, and replaces each set X;
with X; x {i} to ensure that the sets are disjoint, before taking the union.

Problem 3.2.1 (10 points)

Show that if (X;);er is a family of pairwise disjoint sets (that is, X; N X; = @ for
any i # j € I), then |UieI Xi} = > ier | Xi|l. (Hint: if you think this is trivial, you
are probably missing something.)

Cardinal addition satisfies many of the properties you would expect addition to satisfy.
It is associative: (k 4+ \) + pu = £ + (A + p), commutative: K + X\ = X\ + K, increasing;:
A < pimplies K + A < Kk 4+ p, and finally, K + 0 = k. These facts can be easily shown
using the previous problem.

Warning: cardinal addition is not the same thing as ordinal addition, even though we
use the symbol + for both! For example, let’s compute Ng + 1, where + means cardinal
addition. Since |w| = Ng and [{w}| =1, and the sets w and {w} are disjoint, we have

Ro+ 1= |wU {w}] = |w+1] = Rp.

That is, g + 1 (where + is cardinal addition) is not equal to w + 1 (where + is ordinal
addition). To prevent confusion, we will adopt the following convention:

e When thinking of X, = w, as the cardinality of some set (e.g. when doing cardinal
arithmetic), we write R,.

e When thinking of R, = w, as an ordinal that just so happens to be a cardinal (e.g.
when doing ordinal arithmetic), we write w, (or simply w if a = 0).
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Anyways, it should almost always be clear from context whether + is supposed to stand
for ordinal addition or cardinal addition.

Next, we turn our attention to multiplication. In elementary school arithmetic, the
equality 2 -3 = 6 means that if {a, b} has cardinality 2 and {z,y, z} has cardinality 3,
then their Cartesian product {a,b} x {z,y, 2z} = {(a, ), (a,y), (a, 2), (b,x), (b,y), (b, 2)}
has cardinality 6. We now define the product of any number of cardinals.

Definition 3.2.3 — Let (X;);es be a family of sets. The Cartesian product [],.; X;
is defined as the set of families (z;);er such that x; € X; for all i € I.

For a family (k;);cs of cardinals, their product [];.; ; is defined as ‘HiEI mi’. If
we only have two cardinals s, A, then we write their product as k- A = |k x A|.

Problem 3.2.2 (5 points)

Show that the Cartesian product []
all i € I, then [[;.; X; is nonempty.

ser Xi is a set. Show that if X; is nonempty for

Unfortunately, we have to deal with several abuses of notation here. Firstly, [[,c; i is
used both for the Cartesian product of the cardinals and its cardinality.

Second, if we only have two sets X, X1, then their Cartesian product as defined above,
call it Xo ® X1 = [];co Xi, is not equal to the Cartesian product Xo x X; as defined in
Section 1! Thankfully, there is a natural bijection Xy ® X1 — Xy x X; sending (z;)ie2
to (zg, 1), so there is nothing to worry about.

Problem 3.2.3 (10 points)

Show that |[T;c; Xi| = [T;e; | Xil- (The first [T is the Cartesian product of sets, and
the second [] is the product of cardinals.)

In particular, it follows that | X x Y| = |X|-|Y|. Just like cardinal addition, cardinal
multiplication satisfies many intuitive properties. It is associative: (k- A)-p =k (- p),
commutative: k- = Xk, distributive: k- (A 4+ pu) = K- A+ Kk - i, increasing: A < p
implies k- A < k- i, and finally, x - 1 = & and & - 0 = 0. Furthermore, the sets | |,y X
and X x Y are equal (not just equinumerous), so ) ;.; k= K- [I].

Once again, it is important to stress that cardinal multiplication is not the same as
ordinal multiplication. For example, observe that the Cartesian product w x 2 and the
ordinal w - 2 are equinumerous: there is a bijection w x 2 — w - 2 which sends (a, b) to
w - b+ a. It immediately follows that

N0-2:’w><2‘:’(,U'2’:N0.

Of course, w - 2 = w is not true under ordinal multiplication.
However, it turns out that for finite cardinals, cardinal arithmetic works exactly the
same way as ordinal arithmetic.

Problem 3.2.4 (10 points)

Prove that m +,n =m +.n and m -, n = m - n for all natural numbers m,n € w,
where +,, -, denote ordinal addition and multiplication, and 4+, -. denote cardinal
addition and multiplication.
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On the other hand, cardinal addition and multiplication are kind of trivial for infinite
cardinals, thanks to a theorem proven by Gerhard Hessenberg in 1906.

Theorem 3.2.4 (Hessenberg)

If x is an infinite cardinal, then k - k = k.

Proof. We have k -k > k-1 = K, so it suffices to show that k- x < k. Assume for the
sake of contradiction that k- x > k for some infinite cardinal k. Then, we may take x to
be the smallest such cardinal.

We construct a well-order on k X k as follows:

(a1, B1) < (a2, B2) <= max{a, 1} < max{ag, (2}
V (max{ay, f1} = max{ag, B2} N a1 < a)
V (max{oq,ﬁl} = max{ozg,ﬁg} Noapg=ag AP < 62)

It is not hard to check that this is indeed a well-order. A visualization of this is shown
below, where (a, 3) is the cell on the ath row and the Sth column.

0 1 2 3 W
0 0 1 4 9 w
1 2 3 5 10 | -+ |w+1
2 6 7 8 11 | - |w+2
3 12 | 13 | 14 | 15 w43
W o lw-2w2+1|w2+2[w2+3] -+ |w-3

Let & be the order type of (k X k, <). By assumption, we have £ > |k X k| = k- kK > R,
so suppose that the order-isomorphism & — £k X k maps k to («, 8). In other words, the
set X ={(/, ) € k x k: (o, 8) < (a, B)} has order type x under <. Note that a and
B can’t both be finite, as otherwise X would be finite.

Next, let § = S(max{«, 5}), which is infinite but less than x. Then X C ¢ X 4, so the
order type of (§ x §,<) is at least x. In particular, |§| - [§] = |0 x §] > k > |d]. However,
we had defined « to be the smallest infinite cardinal such that s - K > k. So since |J] is
an infinite cardinal smaller than k, we have a contradiction. ]

From this, we find that cardinal addition and multiplication with infinite cardinals is
given by a very simple formula:

Problem 3.2.5 (5 points)

Show that if x and A are nonzero cardinals and at least one of them is infinite, then
K+ A=k -=max{r, \}.
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We also get a nice application to ordinal arithmetic.

Problem 3.2.6 (10 points)

Prove that if o and 8 are nonzero ordinals and at least one of them is infinite, then

la+ 8] = |a - 8] = max{l|al, |B]}.

Finally, we take a brief look at cardinal exponentiation.

Definition 3.2.5 — For two sets X,Y, the hom-set Hom(X,Y) (also denoted XY
or sometimes YX) is the set of functions from X to Y.
For two cardinals &, \, define x* = [Hom(\, x)|.

Note that Hom(X,Y) C P(X x Y), so Hom(X,Y) is a set. Furthermore, it is easy to
show (similarly to Problems 3.2.1 and 3.2.3) that [Hom(X,Y)| = |Y|X.

Problem 3.2.7 (5 points)
Show that |P(X)| = 21Xl for any set X.

Just like before, we list some easy properties of cardinal exponentiation. It satisfies
the “distributive” identities (k- A\)* = k# - \* and kM = g - k# and KM = (K*)*, the
“unit” identities kK = 1 (in particular, 0° = 1) and 1* = 1 and 0% = 0 for £ > 0, and is
increasing: x < X implies k* < M, and 0 < X < p implies k* < k. Finally, observe that
the sets [[;cx Y and Hom(X,Y') are equal, so [[;c; k= k1.

Problem 3.2.8 (5 points)
Show that if 2 < k < X\ and ) is infinite, then x* = 2.

Cardinal exponentiation is much more mysterious than addition or multiplication. For
finite cardinals, it is of course easy to compute, but for infinite cardinals, the very first
nontrivial computation already leaves us stumped: what is 2807

Definition 3.2.6 — The cardinality of the continuum is the cardinal ¢ = 280,

We know, from previous problems, that ¢ = |P(w)| = |R|. (The continuum refers to
the set R, which is “continuous”, hence the name.) So which aleph number is ¢ equal to?
The continuum hypothesis (CH) states that ¢ = Ny, a natural guess. But surprisingly, it
is impossible to prove or disprove the continuum hypothesis using the axioms of ZFC!
This strange phenomenon will be discussed shortly, and we will prove it by the end of
this Power Round.

What about even larger cases, such as 281? We can make the following guess:

DA N,t+1  for all ordinals «.

This is known as the generalized continuum hypothesis (GCH). Of course, GCH implies
CH, but not the other way around. In particular, GCH is impossible to prove. In fact, it
is also impossible to disprove.

It turns out that if we assume the generalized continuum hypothesis, then cardinal
exponentiation becomes very nice, as we will see shortly.
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3.3 Cofinality (60 points)

Suppose that ¢ = Ny. Since ¢ is uncountable, we have 6§ > 1. Can we say anything else
about 67 Not much, as it turns out, but we can use the concept of cofinality to rule out
a few possibilities for #. For instance, we will see that 6 can’t equal w.

Definition 3.3.1 — Let « be a limit ordinal. For an ordinal 3, a function f : 8 — «
is cofinal if sup{f(y) : v < B} = a. The cofinality of « is the least ordinal cf & such
that there exists a cofinal function cf o — a.

An infinite cardinal k is regular if cf k = k, and singular if cf kK < k.

If v is a limit ordinal, then by Problem 2.2.1, the identity function id : & — « (where
id(8) = B for f < «) is cofinal, so the cofinality cf o is well-defined and at most a. (If «
is a successor ordinal, then no function f — « is cofinal.)

Intuitively, the cofinality of v measures how easy it is to approach . For example, the
cardinal N, 1, is quite large, but it is very easy to approach. The function w — N, 4+,
sending n to W, 4y, is cofinal, so cf Ry, 4+, < Ng. That is, we can approach R, 1, using
Ny ordinals. By Problem 3.3.1 below, the cofinality can’t be finite, so cf N, 1., = No.

On the other hand, the cardinal X, is much smaller, but it is much more difficult
to approach. In fact, by Problem 3.3.2 below, it is regular: c¢f R, 11 = N 11, so we need
N,,+1 ordinals to approach W, .

Problem 3.3.1 (15 points)

Prove that cf « is always a regular cardinal.

Problem 3.3.2 (10 points)

Let a be an ordinal. Prove that
(a) If a =0o0r o=+ 1, then R, is regular.

(b) If « is a limit ordinal, then cf X, = cf a.

In order to apply the concept of cofinality to study ¢, we need Kdnig’s theorem, first
shown by Gyula Koénig in 1905.

Problem 3.3.3 (15 points)
Let (k;)ier and (\;);er be families of cardinals such that x; < A; for all ¢ € I. Then

Z R < H N
i€l el

(Hint: if k; = 1 and \; = 2 for all i € I, then we get |I| < 21|, so Kénig’s theorem
generalizes Cantor’s theorem. Does the proof generalize as well?)

Problem 3.3.4 (10 points)

Prove that if x is an infinite cardinal, then cf 2% > k.
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In particular, this means that cf ¢ > Ng. So if ¢ = Ny, then # must either be a successor
ordinal, or a limit ordinal with cofinality > Ng. This rules out a few possibilities for what
f can be: for instance, 8 can’t equal w, or w - 2, or wy + w, or w,, and so on.

We end with another application to cardinal exponentiation. For an infinite cardinal
K, let kT denote the smallest cardinal greater than x (that is, R} = Ny11).

Problem 3.3.5 (10 points)

Assuming the generalized continuum hypothesis, prove that if Kk and A\ are infinite
cardinals such that cf k > A, then k* = k.

KTheorem 3.3.2 h

Under the generalized continuum hypothesis, if x and A are infinite cardinals, then
(a) If A < cf k, then x* = k.
(b) If cf Kk < X\ < K, then k* = K.

(c) If X > K, then x* = AT,
\ %

Proof. (a) is Problem 3.3.5, and (c) follows from Problem 3.2.8: if A\ > &, then by GCH,
we have k* = 2* = A*. From now on, we assume that c¢f Kk < \ < k.

It suffices to show that k% > k. Indeed, if this is true, then we have k* < k" = kT
and £ > kTF > k1 so k* = kT, and we would be done.

Let s : cf k — k be cofinal, and for the sake of contradiction, suppose that k% < &,
so that there exists a surjective function F': kK — Hom(cf k, k). Next, define a function
f:cfk — Kk as follows: for £ < cf k, define f(&) as the smallest ordinal v < k such that
v # (F(a))(€) for any o < s(§). (Such a v always exists, as |s(§)| < k.)

Since F is surjective, we have f = F(«) for some a. However, since s is cofinal, there
exists some ¢ such that s(¢) > a. Hence, f(§) # (F(a))(&), a contradiction. O

3.4 Interlude: Godel’s Incompleteness Theorems

In September 1930, David Hilbert gave a fiery speech for his retirement address at the
Konigsberg conference, ending with the words “Wir miissen wissen. Wir werden wissen!”
(Translation: “We must know. We shall know!”) These words were later engraved on his
tombstone.

Hilbert believed that mathematics was complete: that it was possible to find a set of
axioms for the entirety of mathematics, such that every statement can be either proved
or disproved from the axioms. Of course, he also wanted to make sure that those axioms
were consistent: that it was impossible to prove an obviously false statement.

But at the very same conference, a young Kurt Godel announced his newest result: in
any? consistent system of axioms, there will always statements that are neither provable
nor disprovable — they are independent from the axioms. This is known as Gddel’s first
incompleteness theorem. Shortly thereafter, Gédel published this result, and with that,
Hilbert’s dream shattered.

We give a brief exposition of Godel’s work below.

4Actually, there are some additional technical conditions required: the set of axioms must be recursively
enumerable, and the theory must be capable of describing the addition and multiplication of natural
numbers. But all you need to know is that ZFC satisfies these conditions.
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Definition 3.4.1 — Let ¢ be a sentence. We write ZFC I ¢ if we can prove ¢ in
ZFC. If ZFCF ¢ and ZFC ¥ —p, then we say that ¢ is independent from ZFC.

Let L denote the sentence 3z (z # x), which is clearly false. We say that ZFC is
consistent if ZFC ¥ L.

-
Theorem 3.4.2 (Godel, Rosser)

If ZFC is consistent, then there exists a sentence which is independent from ZFC.

The condition that ZFC is consistent is necessary. If we could prove a false sentence
in ZFC, then we would be able to prove every possible sentence, and nothing would be
independent (and mathematics would fall apart).

The construction that Godel gave, the Gddel sentence, works by creating some clever
interplay between the base theory and the coded theory. First, we construct a formula
Bew("¢), which states that "¢ can be proved in the coded theory ZFC,.. (The name of
the formula is short for Beweis, which is German for “proof”.) This formula satisfies the
following provability conditions:

1. If ZFC+ ¢, then ZFC F Bew("¢™).
2. ZFC proves Bew("¢ ") = Bew("Bew ("¢ ™) 7).
3. ZFC proves (Bew ("¢ ") ABew ("¢ = ¢7)) = Bew("¢7).

The Godel sentence G is then constructed, using a clever trick, so that ZFC proves the
sentence G <= —Bew("G™). It follows easily that ZFC ¥ G: if not, then we would have
both ZFC = Bew("¢ ") (by the first provability condition) and ZFC = —Bew("¢ ™) (by the
definition of G), which contradicts the consistency of ZFC.

Unfortunately, Godel was not able to show that ZFC ¥ =G without introducing some
additional assumptions. In 1936, J. Barkley Rosser got around this problem by slightly
tweaking the definition of Bew ("¢ ™), and thus he also gets credit for the theorem. We
won’t go into the details here.

In the paper that Godel introduced his first incompleteness theorem, he also sketched
a proof of his second incompleteness theorem, which we state below.

Definition 3.4.3 — The sentence Con(ZFC,) is defined as —Bew (" L7).

-
Theorem 3.4.4 (Godel)
If ZFC is consistent, then ZFC ¥ Con(ZFC,).

\_

The proof is quite technical and provides little insight. After assuming for the sake of
contradiction that ZFC - Con(ZFC,), it is essentially a matter of figuring out how to use
the provability conditions given above to deduce that ZFC - GG, which would produce a
contradiction due to the first incompleteness theorem.

Contrary to popular belief, the sentence Con(ZFC.) does not state that ZFC (the base
theory) is consistent. After all, “ZFC is consistent” is a meta-mathematical statement!
Instead, the sentence Con(ZFC,) states that the coded theory ZFC, is consistent, and it
is important to keep in mind that ZFC, is not the same as ZFC.
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4 Models of Set Theory (16 problems, 180 points)

It’s time to get even more meta!

In the last section, we discussed the phenomenon of a sentence being independent from
ZFC. But barring contrived examples like the Godel sentence, how would we show that
something like the continuum hypothesis is independent?

Perhaps it is best to begin with a simpler example from arithmetic. Suppose that we
start from some “axioms” about integers, say the following:

(x+y)+z=2+ (y+ 2), r+y=y+ux, r+0=uz, z+ (—z) =0,
(x-y)-z=w-(y-2), @ l=z  2-0=0, z-(y+t2)=(r-y)+(z-2),

for all x,y, z. These are known as the ring arioms. Now, we ask: is it possible to prove
or disprove the statement 0 # 1 from the ring axioms? Well, of course we can’t disprove
it — it’s true! But it turns out that we also can’t prove it.

To see why, imagine an alien civilization that uses a bizarre number system, in which
all numbers are equal. In particular, they believe that 0 = 1. But they also believe that
all of the ring axioms are true. If we somehow came up with a proof of 0 # 1 using only
the ring axioms, then the proof would work equally well for the aliens’ number system,
and they could use it to show that 0 # 1. However, that is not true in the alien number
system! Therefore, such a proof cannot exist.

What we’ve done here is construct a new setting (a new “number system”) in which
all the ring axioms hold, but in which 0 # 1 fails. In general, a setting in which the ring
axioms hold is called a ring. For example, we have a ring Z of integers, in which 0 # 1 is
true. But the aliens also have a ring {0}, consisting of just one number, in which 0 # 1
is false. If a statement can be proved from the ring axioms, then it must be true in all
rings, and since the statement 0 # 1 is true in some rings but false in others, it must be
independent from the ring axioms.

We can apply the same ideas to set theory. Let’s define a model of ZFC as a “setting’
in which the axioms of ZFC hold true. (This will be made rigorous below.) In order to
prove that the continuum hypothesis is independent from ZFC, all we need to do is to
exhibit a model of ZFC in which CH is true, and a model of ZFC in which CH is false. Of
course, this is much easier said than done...

Y

4.1 Relativization (30 points)

Before giving a rigorous definition of a model, we need to study some aspects of logical
formulas in detail.

Definition 4.1.1 — The universal quantifier is the symbol V, and the existential
quantifier is the symbol 3. A quantifier is one of these two symbols.

Let ¢ be a formula, written formally (so no abbreviations). If a quantifier occurs
as part of the expression Va or dz for some variable z, then that occurrence of the
quantifier in ¢ is unbounded. If a quantifier occurs as part of (Va € X) or (Jz € X)
for some variables z and X, then that occurrence of the quantifier is bounded.

For example, let’s write down the axiom of union formally:
VX3IUVy(yeU <= (Fre X)y € x).

There are four quantifiers in this sentence: two universal quantifiers and two existential
quantifiers. The first three quantifiers are unbounded, and the last one is bounded.
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Every formula can be rewritten such that all quantifiers are unbounded: we can just
replace all occurrences of (Vo € X) p(z) with Vo (z € X = ¢(x)) and (Ix € X) ()
with 3z (z € X A ¢(z)).

Definition 4.1.2 — Let ¢ be a formula. For a class M, the relativization of ¢ to
M, denoted ™ is the formula obtained by writing ¢ such that all quantifiers are
unbounded, and then replacing all instances of Vo with (Vax € M) and all instances
of 3z with (3z € M). If ™ is true, then we say that ¢ is true in M.

For example, let ¢ be the formula Y = P(X), which is short for
VAA€eY <= Vo (re A = z € X)).
After we relativize to M, the resulting formula ¢ is
VAe M)(AeY <= (VzeM)(zec A = ze€X)).

Intuitively, @™ states that “M thinks that ¢ is true”, as M can only “see” sets that are
in M. Anthropomorphism is quite common in set theory :)

Problem 4.1.1 (10 points)

Let M be a class. Prove that the axiom of regularity is true in M. Prove that if M
is transitive, then the axiom of extensionality is true in M.

Relativization can cause a lot of wacky phenomena. For example, consider the formula
Y =P(X) above. If M = {0,1,{2}}, and X =0 =@ and Y = 1 = {@&} are elements
of M, then Y = P(X) is true: Y is the power set of X. However, the formula does not
remain true when relativized to M. Take A = {2} € M. Then, any x € M which is in A
is also in X (vacuously!), and yet, A ¢ Y.

Even worse, if we let M = {0,1,{0,2}} and X = 0, then there are two distinct choices
of Y € M such that Y = P(X) is true in M: namely ¥ =1 = {0} and Y = {0,2}. The
problem is that M can’t “see” the set 2, so it can’t distinguish between {0} and {0, 2}.
If M is transitive, then the axiom of extensionality is true in M, thus we don’t have this
problem: for given X € M, there is at most one Y € M satisfying (Y = P(X))™. But
there might be no such Y at all (take M = {0} and X = 0).

Definition 4.1.3 — A formula ¢(z1,...,x,) is absolute for a class M if, for every
T1,..., 2Ty € M, we have oM (z1,...,2,) iff p(z1,...,2,).

Absoluteness is a nice property, so we would like to find situations in which it holds.
Here is one of them:

Definition 4.1.4 — A formula is called Ay if all of its quantifiers are bounded.

Problem 4.1.2 (10 points)

Prove that any A formula is absolute for any transitive class. (Hint: when working
with formulas, a common strategy is to induct on the length of the formula.)
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If a formula p(z1,...,x,) is logically equivalent to a Ag formula ¥ (z1,...,x,), then it
is not hard to see that ¢(z1,...,z,) is also absolute in any transitive class. (By logically
equivalent, we mean that the sentence V1 - -V, (p(z1,...,2,) < ¥(x1,...,2,)) can

be proven logically, without using the axioms of ZFC.) For example,
e “x Cy” is short for (Vz € x) z € y, which is Ay.
e “z = @ is equivalent to —~(Jy € x) y = y, which is Ao.
e “x is transitive” is short for (Vy € )y C x, which is Ao.
e “ov is an ordinal” is equivalent to (Vz € a)(x C o A x is transitive), which is Ay.
o “y=xU{z}” is equivalent to z CyAx € y A (Vz € y)(z € x V z = x), which is Ay.

o “z={z,y}” is equivalent to z € 2z Ay € z A (VYw € z)(w =z Vw = y), which is Ag.
In particular, “y = {z}” is equivalent to a Ay formula.

e “2 = (z,y)” is equivalent to (s € 2)(Ip € 2)(z = {s,p} As = {z} Ap = {z,y}), so
it is equivalent to a Ay formula.

e “f is a function X — Y7 is equivalent to (Vz € X)(Jy € Y)((Tp € f)p = (x,y) A
(VzeY)((Fge flg=(x,2) =y=2)AN(Vpe f)Fzre X)FyeY)p=(z,y). If
that was too complicated to parse, feel free to skip it. Of course, this is also Ag.

e The following are all equivalent to Ap formulas: z=zUy; z =2 Ny; Y =JX;
Y =NX; Z=X xY; Ris arelation; X = dom(R); X =ran(R); f is a function;
f is an injection/surjection/bijection X — Y.

Therefore, these formulas are all absolute in any transitive class.

Of course, not every formula is equivalent to a Ay formula. First of all, sentences are
never Ag: since all variables in the sentence are bound by quantifiers, the sentence must
start with an unbounded quantifier (possibly after a — symbol). Second of all:

Problem 4.1.3 (10 points)

Show that the statements “Y = P(X)” and “X ~ Y” and “k is a cardinal” are not
logically equivalent to any Ag formula.

4.2 Working in a Model (40 points)
And finally, we get to models of ZFC.

Definition 4.2.1 — A model of ZFC is a class M such that every axiom of ZFC is
true in M.

The statement “M is a model of ZFC” cannot be written as a single formula. Instead,
it consists of infinitely many formulas, one for each axiom of ZFC. So when we say that
“ZFC proves that M is a model of ZFC”, we really mean that for every axiom ¢ of ZFC,
we have ZFC F oM.

Problem 4.2.1 (5 points)
Show, in ZFC, that the universe V' is a model of ZFC.
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Lemma 4.2.2
Suppose that ZFC proves that M is a model of ZFC. If ZFC I ¢, then ZFC - oM.

Proof. Suppose that we have a proof of ¢ from the axioms of ZFC, where each step is
either a logical deduction or an axiom of ZFC. We relativize each step of the proof to M.
The logical deductions remain valid, and by assumption, the relativized axioms are all
provable in ZFC. Therefore, we get a proof of M. O

In a model M of ZFC, relativization behaves much more nicely, and we avoid some
of the pathological phenomena discussed in the previous subsection. For example, ZFC
proves VX 3Y (Y = P(X)), so it remains true in M as well: for all X € M, there is a
unique Y € M such that (Y = P(X))™. This Y is what M “thinks” the power set of X
is, so we denote it as PM(X).

In general, if we have a formula ¢(z1,...,2,,y) such that

ZFCFVxy - -V, Ay p(zr, ..., 20, 9),

then we can define some operator F' and write y = F(z1,...,zy,) as an abbreviation of
o(1,...,Zn,y). Indeed, we have defined many operators like this. Now, given a model
M of ZFC, we know by Lemma 4.2.2 that

ZFCF (Vo € M) --- (VYz,, € M)(3y € M) oM (z1,...,20,7),

so for 1,...,z, € M, we shall write y = FM(x1,...,x,) in place of oM (x1,...,2,,y),
thus defining the relativized operator F™. For example, we can relativize the power set
operator (see above), and we also have things like x UM 4. Constants, such as @ and w,
can be treated as operators on n = 0 inputs, and so they can also be relativized to M in
the same way, giving us @™ and w™.

Similarly, if we have parameters py,...,p, € M and a class C' = {x : o(z,p1,...,Pn)},
then we can relativize C by defining CM = {x € M : oM (x,p1,...,pn)}. For example,
we have a class Ord™ of ordinals “according to M.

Definition 4.2.3 — Let M be a model of ZFC. For an operator F, defined so that
y = F(x1,...,zy,) is short for ¢(z1,...,z,,y), we say that F is absolute for M if
the formula ¢(z1,...,z,,y) is absolute for M.

For parameters p1,...,p, € M and a class C = {x : o(x,p1,...,pn)}, we say that
C'is absolute for M if the formula o(z,p1,...,ps) is absolute for M.

In other words, an operator F is absolute for M iff FM(zy,...,2,) = F(x1,...,2,)
for all z1,...,2, € M, and a class C is absolute for M iff CM = C N M.

Of course, we can’t expect absoluteness to always hold. For example, observe that by
definition, @™ doesn’t contain any elements of M, but it might contain things not in M
that M cannot “see”, so @M is not necessarily empty.

However, if M is a transitive model of ZFC, then absoluteness does hold pretty often.
In fact, we have a stronger version of Problem 4.1.2.

Definition 4.2.4 — A formula ¢(z1,...,2,) is AgFC if there is some Ag formula
Y(x1,...,zy) such that ZFC F Vay - - - Vo, (p(z1, ..., 2n) <= ¢¥(z1,...,25)). (That
is: ¢ is provably equivalent to some Ag formula.)
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Problem 4.2.2 (5 points)
Let M be a transitive model of ZFC. Show that any AZC formula is absolute for M.

Clearly, if a formula is logically equivalent to a Ay formula, then it is AgFC. Looking
back at our list in the previous subsection, there are a lot of absolute operators:

QM =4, {x}M = {'I}a {'ray}M = {xay}a (xay)M = (xay)v
UMX:UX, ﬂMX:ﬂX, cUMy=xUy, 2znMy=2xny,
XxMy =X xY, dom™(R)=dom(R), ran(R)=ran(R),

and absolute classes:
ord¥ =0ordnM, PY(X)=PX)nM, Hom™(X,Y)=Hom(X,Y)nN M.

And there are even more situations where absoluteness holds.

Problem 4.2.3 (10 points)

Show that the statements “« is a successor ordinal” and “o is a limit ordinal” and
“a 1s a natural number” and “a = w” are A(Z)FC. Conclude that if M is a transitive
model of ZFC, then wM = w.

Problem 4.2.4 (5 points)

Let M be a transitive model of ZFC, and G be a class function on V such that G is
absolute for M. By transfinite recursion, we obtain a (unique) class function F' on
Ord such that F(«a) = G(F|«). Show that F' is absolute for M.

That is: transfinite recursion preserves absoluteness. In particular, it is easily checked
that ordinal addition and multiplication are absolute in any transitive model of ZFC.
The following instance of absoluteness is slightly trickier to show:

Problem 4.2.5 (15 points)

Prove that “x is a finite set” is absolute in any transitive model of ZFC.

4.3 The von Neumann Hierarchy (70 points)

As we have seen, the universe V is trivially a model of ZFC. But that’s kind of useless.
We now begin our quest of constructing nontrivial models of ZFC.

Definition 4.3.1 — The von Neumann hierarchy consists of the sets V,, (where «
is an ordinal), which are defined recursively as

o V=0,
® Va+i :P(Va)7

o Vo =Up<o Vs if o is a limit ordinal.
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The von Neumann hierarchy is named after John von Neumann, but it was actually
first defined by Ernst Zermelo in 1930. Some people call it the cumulative hierarchy.

The first few levels of the hierarchy are V) = &, then V; = {@}, then Vo = {2, {2}},
then Va = {@, {2}, {{9}},{9,{2}}}. After this, the levels quickly become impossible
to write down: Vg has 269936 clements! But at least Vj, is finite for n < w.

Problem 4.3.1 (10 points)
Let «, 8 be ordinals. Prove that

(a) V4 is transitive.
(b) If @ < B, then V,, C V3.
(c) a € Vay1 but a ¢ V,.

A nice way to visualize the elements of V,, is to draw them as trees. To draw the tree
for a set x, we first draw a root node. Then, we draw the trees for every element y of x,
and connect the roots of these trees to the root node. (Note that the tree for @ is just a
single root node.) For example, the tree for 3 = {@,{2},{2,{2}}} is

If x € V,, for some natural number n, then every element of x must lie in V}, for some
k < m, so by induction, it is not hard to show that the tree for x contains only finitely
many nodes. Moreover, the “height” of the tree (the length of the longest branch) turns
out to be the smallest m such that z € V;,,;1. For example, we have 3 € V; but 3 ¢ V3,
and indeed, the height of the tree above is 3.

In general, we can still draw the tree even if x ¢ V,,, but then it would no longer have
finitely many nodes, and our intuition breaks down.

Theorem 4.3.2

Every set is in V,, for some ordinal a.

In other words, the universe V' is the union of V,, over all ordinals a. How do we prove
this? The idea is that if there is a set which is not in any V,,, then we can try to find an
€-minimal set among all such sets, and then derive a contradiction.

Unfortunately, the axiom of regularity only applies to sets, not proper classes, so we
don’t get an €-minimal set for free. Let’s fix that right now:

Problem 4.3.2 (30 points)

Let C be a nonempty class. Prove that C has an €-minimal element, that is, a set
x € C such that y ¢ « for any y € C. Using this, finish the proof of Theorem 4.3.2.
(Hint: first try to prove this under the assumption that C' contains a transitive set.)
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Does the von Neumann hierarchy give us models of ZFC? Well, almost:

Problem 4.3.3 (20 points)

Let a be a limit ordinal greater than w. Verify that all of the axioms of ZFC, with
the possible exception of the axiom of replacement, are true in V.

However, it is hard to get V,, to satisfy the axiom of replacement. This axiom schema
is very powerful: it’s the whole reason we can do transfinite recursion, and we have seen
that transfinite recursion allows us to do a lot of things, such as constructing really big
ordinals. So we’d expect that a needs to be quite large.

Definition 4.3.3 — An infinite cardinal x is a strong limit cardinal if 2* < k for
every cardinal A < k. A cardinal is inaccessible if it is uncountable, regular, and a
strong limit cardinal.

Just how large are these beasts? Well, if R, is inaccessible, then first of all, & must be
a limit ordinal (otherwise, if @ = 3 + 1, then we have Ng < x but 2% > k). Next, since
k is regular, we have Ry = cf Ny = cf a < o < N,. That is, X, = a — it is a fized point of
the aleph function! The smallest such fixed point is denoted

®(1,0) = sup{w, Ww, W, s - - - }

but that has cofinality ¥y, and is nowhere near being regular, so inaccessible cardinals
are much larger than that. In fact, in some sense, they are larger than anything we can
ever write down explicitly.

Problem 4.3.4 (10 points)

Prove that if k is an inaccessible cardinal, then V is a model of ZFC.

4.4 The Constructible Universe (40 points)

In 1938, Kurt Goédel sent ripples through the mathematical community once again, by
constructing a model of ZFC — the constructible universe L — in which the generalized
continuum hypothesis holds. As you will later show, this means that if ZFC is consistent,
then it cannot disprove CH.

Godel realized the von Neumann hierarchy grows a bit too quickly to control — at level
w + 1, we already have |V, 41| = 2ol = ¢, and the sets V,, get large even more quickly
after that. So, he tried to slow down this growth rate, so that we have more control over
how cardinals behave.

Consider the set w. It has uncountably many subsets, but not all of them are definable,
because there are only countably many “definitions”. Godel defined a hierarchy similar
to the von Neumann hierarchy, but instead of taking the power set at each step, we only
take the set of all definable subsets. More precisely:

Definition 4.4.1 — Let X be a set. A subset A C X is definable if there exists a
natural number n, a family (p;)1<i<n of elements of X, and a Gddel number of a
formula (x,p1,...,pn), such that A is equal to {x € X : X (2,p1,...,pn)}. The
set of definable subsets of X is denoted Def(X).
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The awkward phrasing here is to emphasize that we are formalizing “A is a definable
subset of X”, which is naively a meta-mathematical concept, as a formula. The details
of how this formalization is done are absolutely cursed, so we do not attempt to describe
them. All you need to know is the following:

Lemma 4.4.2

Let ¢(x,p1,...,pn) be a formula. Then for any set X and elements p1,...,p, € X,
we have {zx € X : o~ (2,p1,...,pn)} € Def(X).

This lemma (or more precisely, a schema of infinitely many lemmas, one for each ) is
not trivial! The number n mentioned in the lemma is a meta natural number, not an
element of w. The lemma also does not trivially imply that

Lemma 4.4.3
For any set X, the set Def(X) contains all finite subsets of X.

We are finally ready to define the constructible universe.

Definition 4.4.4 — The constructible hierarchy consists of the sets L, (where « is
an ordinal), which are defined recursively as

o Lg= g,
° LOH—]. = Def(La),
o Lo =Upo Lp if a is a limit ordinal.

The constructible universe L is defined as the union of L, over all ordinals «, and
the elements of L are called constructible sets.

Problem 4.4.1 (5 points)
Prove that L, C V, for any ordinal «a, and L, =V, if a < w.

Problem 4.4.2 (15 points)
Let «, 8 be ordinals. Prove that

(a) Lg is transitive.
(b) If @ < 3, then Lo C Lg.

(c) @ € Loy1 but a ¢ L.

Therefore, L is transitive, and Ord C L. Next, we show that L is a model of ZFC.

Theorem 4.4.5

The axioms of ZF (i.e. ZFC without the axiom of choice) are true in L.
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Most of the proof is not too different to that of Problem 4.3.3, but there appear to be
some annoying things with the axiom of separation. We omit the proof.

It is much harder to prove that the axiom of choice is true in L. Instead of proving it
directly, we introduce another statement: the aziom of constructibility, which states that
V = L, in other words, that every set is constructible.

Lemma 4.4.6

The axiom of constructibility, V = L, is true in L.

Sketch of proof. The first thing to show is that the operator Def is absolute for L. (This
is not hard once we have a precise definition of Def, but we don’t.) It then follows from
Problem 4.2.4 that the constructible hierarchy is absolute for L (that is, (Ly)" = La).
Therefore, L¥ = L, as desired. ]

Thus, it suffices to show that the axiom of choice follows from V = L. Of course, we
must work in ZF (without the axiom of choice) for this proof. Note that the axiom of
choice is mainly used to deduce things about cardinals, so even without it, we can still
define L and prove its basic properties.

Theorem 4.4.7

In ZF, the axiom of constructibility implies the axiom of choice.

Sketch of proof. It is possible, albeit extremely tedious, to construct a class relation <y,
on L which is a well-order. (We say that a class relation is a well-order if it satisfies the
conditions in Definition 2.3.1 but with classes instead of sets.)

If V = L, then we have constructed a well-order of the entire universe. The axiom of
choice then follows: if X is a set of nonempty sets, then we can define a choice function
f by setting f(z) to be the least element of x with respect to <p. O

Therefore, the axiom of choice is true in L, and thus, L is a model of ZFC. It remains
to show that GCH is true in L, and for that, we will make use of the following lemma.
For an ordinal o, let a™ denote the least cardinal greater than o.

Lemma 4.4.8
If V=L, then P(Ly) C L+ for all infinite ordinals «.

The proof is omitted, as it requires results that we have not introduced.

Problem 4.4.3 (10 points)

Show that if X is infinite, then |Def(X)| = |X|. Conclude that |V, | = |« for every
infinite ordinal . (Hint: recall that Gédel numbers are natural numbers.)

Problem 4.4.4 (10 points)

Prove that V = L implies the generalized continuum hypothesis. Conclude that if
ZFC is consistent, then ZFC ¥ —~CH.
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5 Forcing (11 problems, 160 points)

So far, we have a wonderful proof that the continuum hypothesis cannot be disproved in
ZFC. But what about the other part — that CH cannot be proved in ZFC? Can we also
construct a model in which CH is false, just like how we constructed L?

Alas, this cannot work due to some complicated meta-mathematical reasons, and we
need a new idea. In 1963, Paul Cohen introduced the technique of forcing (for which he
won a Fields Medal): instead of constructing a model of ZFC from scratch, we assume
that we already have a countable transitive model M, and we use it to construct a new
model in which CH fails.

To explain some of the intuition behind forcing, we turn to arithmetic again. Say that
we want to find a ring in which the statement 3z (z # 0 A z - = 0) is true. So we start
with the ring Z, in which the statement is false, and we try to force the statement to be
true by shoving an extra object € into the ring and declaring that € - ¢ = 0. To be sure
we still get a ring, we also throw in everything of the form a + be for a,b € Z, and voila —
we indeed get a ring, denoted Z[e]. It consists of the “numbers” a + be for a,b € Z, and
it is the “smallest” ring containing all integers and also e.

Doing something like this with a model of ZFC is of course much harder. (But that’s
why Cohen won a Fields Medal for figuring it out!) Say we start off with some countable
transitive model M, and we want to find a new model N such that CH fails in N. Now
notice that the failure of CH is equivalent to “there exist No distinct functions w — 27,
so we can try to force that to be true by shoving an extra object f into the model and
declaring that f is an injective function wl! — Hom™ (w, 2).

However, that doesn’t quite work. In our example with rings, we could construct Z|e]
without any problems because we know exactly how arithmetic with € should work. But
for f, it’s not clear at all how it would interact with the elements of M. If we aren’t able
to figure that out, then we won’t be able to construct our model.

We are on the right track, though. To make this construction work, we first make a
small alteration: instead of thinking about functions from wl! to Hom™ (w, 2), we think
about functions from wj! x w to 2, which are basically equivalent but more convenient
to work with. Next, instead of trying to shove such a function in all at once, we instead
insert many bits and pieces of such a function, and rig the construction in such a way
that they assemble themselves correctly.

More precisely, we define a finite partial function from wl! x w to 2 to be a function p
whose domain is a finite subset of w)? x w, and whose range is a subset of 2. These will

be our forcing conditions: oversimplifying a bit, a finite partial function p : wd! x w — 2

is supposed to force the existence of an actual function f : wd! x w — 2 such that p C f.
So, if we have two finite partial functions p, ¢ such that p C ¢, then we can think of ¢ as
a “stronger” forcing condition than p.

Crucially, these finite partial functions turn out to be nice and simple enough that we
can describe how they interact with M. By choosing just the right set of finite partial
functions to throw into the model, the result will be very well-behaved, and we’ll be able

to force the failure of CH. We will describe all of the details below.

5.1 Names and Interpretation (40 points)

We start by describing how forcing works in full generality. We will return to the specific
example of finite partial functions later.

Recall from Definition 2.3.1 that a poset is an ordered pair P = (P, <), where < is a
partial order on P. Our setup for forcing will involve a certain kind of poset, so we first
say some general things about posets.
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Definition 5.1.1 — Let (P, <) be a poset. For p,q € P, we write p < ¢ to mean
p<qVp=q. An element p € P is a largest element if ¢ < p for all ¢ € P.

From this definition, we can easily prove the following facts: if p,q,r € P, then p < p;
ifp<gand g <p,thenp=g¢q;if p<qgand g<r, thenp <r.

If a largest element exists in a poset, then it must be unique. Indeed, if py, p2 are both
largest elements, then p; < p2 and py < p1, so p1 = pa.

Definition 5.1.2 — A forcing notion is a poset P = (P, <) with a largest element,
denoted 1p € P. The elements of P are called forcing conditions. For p,q € P, we
say that p is stronger than ¢ if p < q.

For the remainder of this subsection, let M be a countable transitive model of ZFC,
and P = (P, <) be a forcing notion such that P € M. In particular, since M is transitive,
this means that both the set P and the relation < are in M.

Our goal is to add a subset G C P to our model M, to produce a bigger model M[G].
It turns out that there are certain restrictions on what subsets G we can use, but we’ll
worry about that later.

Definition 5.1.3 — Define the sets ML, where « is an ordinal in M, recursively as
o MP =0,
o My, =PY(Mg x P),

o My = Uz, Mj if a is a limit ordinal.

Lastly, define the set M¥ of P-names as the union of ML over all ordinals a € M.

For example, if p,q,r € P, then {(&,p), {(2,p),(,7)},q)} is a P-name, which lies
in MY, Intuitively, a P-name is a set, where everything in it is “labeled” with a forcing
condition. Once again, we can use trees to visualize P-names. This time, all the nodes of
the tree, except the root, will be labeled with a forcing condition. For example, the tree
for the P-name above looks like

p r

After we build these trees, we shall prune them.

Definition 5.1.4 — Let G be a subset of P containing 1p. The interpretation of a
P-name 7, denoted 7€, is defined as 7€ = {¢“ : (Ip € G) (0,p) € 7} via transfinite
recursion. Finally, let M[G] = {7¢ : 7 € MF}.

More precisely, the “transfinite recursion” involves recursively defining interpretation
functions on ML for each ordinal a € M, and making sure that they all agree, which is
routine but tedious. We omit the details.
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For example, if we use the subset G = {¢,r}, and 7 = {(9,p), {(9,p), (&,r)},q)} is
the P-name used above, then the interpretation is 7¢ = {{@}}. Visually, if 7 is drawn as
a labeled tree, then to obtain 7€, we destroy any node whose label is not in G (as well
as the entire subtree below that node), and erase the labels on the remaining nodes.

Problem 5.1.1 (10 points)
Prove that M C M[G] and G € M|G].

Problem 5.1.2 (15 points)

Prove that M[G] is a countable transitive set containing the same ordinals as M.

Problem 5.1.3 (15 points)

Verify that the axioms of extensionality, pairing, union, infinity, and regularity are
all true in M[G].

If NV is a transitive model of ZFC such that M C N and G € N, then it can be shown
that interpretation is absolute for N. Hence, if 7 € MF, then 7¢ = (%) € N, which
implies that M[G] C N.

That is, if M[G] is a model of ZFC, then it really is the smallest model containing all
elements of M and also G (although we won’t need this fact). However, M[G] might not
be a model of ZFC! We will need to impose more complicated conditions on G for the
remaining axioms to be true in M[G].

5.2 The Forcing Relation (40 points)

As always, M is a countable transitive model of ZFC, and P = (P, <) is a forcing notion.

As we explained in the introduction to this section, the main obstacle we now face is
to figure out a way to describe how the elements of M[G] interact with each other. For
our example with rings, arithmetic in Z[e] can be reduced to arithmetic in Z:

(a4 be)+ (c+de) = (a+c)+ (b+d)e,
(a+be) - (c+de) =ac+ (ad + be)e,

and because of this, it is possible to work in Z[e], even if “c” is not something that we
have ever encountered before. Similarly, to work in M[G], we want a way to describe the
behavior of the elements of M[G], using only things that M can “see”.

So far, notice that we have not used the relation < on P at all! Indeed, in general, it
is not possible to describe the behavior of M[G]. It is only possible if G satisfies some
technical conditions involving the relation < on P.

Definition 5.2.1 — Two forcing conditions p,q € P are compatible if there exists
some forcing condition r» € P such that » < p and r < q. A nonempty subset G C P
is a filter if the following conditions hold:

(1) If p € G, then g € G for every ¢ > p, and

(2) Any two elements of G are compatible.
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In particular, any filter must contain 1p (by condition (1)).

Definition 5.2.2 — A subset D C P is dense if, for any forcing condition p € P,
there exists a forcing condition ¢ € D such that ¢ < p. A filter G C P is generic if
it intersects all dense sets D C P which lie in M (that is, G N D # @).

Problem 5.2.1 (15 points)

Prove that a generic filter exists.

Now, if G is a generic filter, then we can describe the behavior of M[G], using a piece
of black magic known as the forcing relation. If we have a forcing condition p € P, some
P-names 71, ..., € M, and a formula o(T1,...,Tn), then we write

plEo(r, ..., ™),

read “p forces ¢(11,...,7y)”, to mean that if G is any generic filter containing p, then
o(tE, ..., 75) is true in M[G].

In general, a generic filter G will not be an element of M, so we might expect that M
is unable to “understand” the forcing relation. However, there is a way to formalize the
forcing relation to only mention elements of M! The formalization is given below, and is
horribly complicated. Feel free to stare at it until it starts to make more sense, or skip it

altogether — you won’t need to use it to prove anything.

Definition 5.2.3 — Let p € P be a forcing condition, 71, ...,7, € M be P-names,
and ©(71,...,7,) be a formula, written such that it only uses =, €, =, A, 3 (note that
this is always possible by Problem 1.1.1) and has no bounded quantifiers.

We define the forcing relation p I+ o(71, ..., 7,) recursively as follows. A subset
D C P is dense below p if, for any q < p, there exists 7 € D such that » < ¢g. Then

e plk 7 =7y is defined as “for all (71, s1) € 11, the set
{geP:q<s1 = (I(m,82) €E)(q<s2ANqlkm =m2)}
is dense below p, and for all (w2, s3) € 7, the set
{geP:q<so= (F(m1,s51) €n)(g<s1Aqlkm =ma)}
is dense below p”.

plF T € T is defined as “the set {g € P: (3(m,s) € )¢ < sAqglFm=m)}
is dense below p”.

p Ik =g is defined as “q Ik ¢ is false for every g < p”.

plF @ At is defined as “p - ¢ and p IF 7.

pl-3ro(r,0o0,...,0,) is defined as “{g € P: (3r € M¥) qIF ¢(1,01,...,04)}
is dense below p”.

The point is that every object mentioned in this definition is an element of M, so the
forcing relation is really something that M can “see”.
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For the rest of this subsection, let G be some fixed generic filter. We promised that if

p€Gand plF o(ry,...,7,), then o(77,...,7¢) is true in M[G]. In fact, the situation

is even nicer than that, because the converse also holds:

Theorem 5.2.4 (Fundamental theorem of forcing)

Let 71,...,7, € MP and ¢(71,...,7,) be a formula. Then (77, ...,7%) is true in

M |[G] iff there exists some forcing condition p € G such that p IF o(7,..., 7).

Now, we can verify that the remaining axioms of ZFC (namely, separation, power set,
replacement, and choice) are true in M[G].

Problem 5.2.2 (25 points)
Prove that M[G] is a countable transitive model of ZFC.

5.3 Adding Cohen Reals (80 points)

At last, we get to break the continuum hypothesis!

Definition 5.3.1 — Let I, J be sets. A finite partial function I — J is a function
f such that dom(f) is finite, dom(f) C I, and ran(f) C J. (In other words, f is a
function, and is a finite subset of I x J.)

The set of finite partial functions I — J is denoted Fn(Z,.JJ). We put a partial
order < on Fn(I,J) via reverse inclusion: for p,q € Fn(I,J), write p < ¢ iff ¢ is a
proper subset of p. In an abuse of notation, we shall also write Fn(Z, J) to denote
the resulting poset (Fn(I,J), <).

Notice that Fn(Z,J) is a forcing notion: its largest element is the empty set (which is,
of course, a finite partial function I — J).

As before, let M be a countable transitive model of ZFC. Recall from Problem 4.2.5
that finiteness is absolute for M, so if I,.J € M, then Fn (I, .J) = Fn(I,.J). To break
the continuum hypothesis, we will use the forcing notion

Fn(wd! x w,2) = Fn(ws x w,2)” e M

that we alluded to in the introduction of this section. Finally, let G C Fn(w)! x w,?2) be
a generic filter.

Problem 5.3.1 (10 points)
Prove that | JG is a function w) x w — 2 which lies in M|[G].

Problem 5.3.2 (15 points)
Construct an injective function w)’ — Hom™[%l(w, 2) which lies in M[G].

The R -many functions w — 2 that we have created are often called Cohen reals. Of
course, they are not actually elements of R (in any sense), but set theorists like to call
them “reals” because Hom(w, 2) is equinumerous to R.
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It looks like we’re very close to proving that CH is false in M[G]! But we still need to
show that (R)MIE] and NM are equal, and it turns out that this is quite tricky.

Definition 5.3.2 — Let P be any forcing notion. A subset A C P is called a strong
antichain if any two distinct forcing conditions p, ¢ € A are incompatible. We say
that P has the countable chain condition (or just the c.c.c.) if any strong antichain
A is finite or countable (that is, |[A|] < Np).

Since Fn(w)! x w,2) is countable, it obviously has the countable chain condition. A

more interesting question is whether or not “Fn(wd! x w,2) has c.c.c.” is true in M. Tt
turns out that this is true, and we will prove it below.

We start with the A-system lemma, introduced by Nikolai Shanin in 1946.

Theorem 5.3.3 (Shanin)

Let X be an uncountable set of finite sets. Then there exists an uncountable subset
Y C X and a finite set R, such that AN B = R for any distinct A, B € Y.

The set Y is called a A-system, and R is its root.

Proof. We first prove the result under the assumption that all elements of X have the
same cardinality n. To do this, we induct on n. If n = 1, then we just take Y = X and
R = @. Now, assuming that the result holds for n, we prove it for n + 1.

For every set a, let X, = {A € X :a € A}. If some X, is uncountable, then we apply
the inductive hypothesis to the uncountable set X’ = {A\ {a} : A € X, }, to obtain an
uncountable A-system Y’ C X’ with root R’. We see that Y = {A' U {a} : A’ € Y'} is
an uncountable A-system with root R = R’ U {a}.

If all X, are finite or countable, then we define a family (Ay)a<w, Of elements of X
recursively: given the values of Ag for 8 < «, the union (J s<a Apg is countable, and the
set {A€ X :(FB<a)ANAs# a}=U{Xa:a€ s, Ap} is thus also countable, so
we can pick A, to be disjoint from the Ag for all § < a. (This is formalized using the
axiom of choice.) We get an uncountable A-system with root R = &.

This completes the induction, and now we prove the full theorem. For n < w, we let
Xy ={A € X : [A| =n}, so that X =J, ., X(n)- If all X(,,) were countable, then X
would be countable, so some X(,,) has to be uncountable. We can then apply our result
to X(;) to obtain an uncountable A-system. O

Problem 5.3.3 (15 points)
Prove that if |J| < Ny, then Fn(7, J) has the countable chain condition.

In particular, Fn(wy X w,2) has the countable chain condition, so relativizing to M, it
follows that “Fn(w)! x w,2) has c.c.c.” is true in M. Next, we show that M is able to
somewhat control the behavior of functions in M[G].

Problem 5.3.4 (20 points)

Let X,Y € M, and let f: X — Y be in M[G| but not M. Prove that there exists
some F: X — P(Y) in M, such that f(z) € F(z) and |F(z)|™ < N for all z € X.
(Hint: use the forcing relation and the c.c.c. to control the behavior of f.)
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With these results, we are finally able to break the continuum hypothesis!

Problem 5.3.5 (15 points)

Prove that “k is a cardinal” is true in M|[G] iff it is true in M. Conclude that the
continuum hypothesis is false in M|[G].

Are we done yet? Not 100% — we used a countable transitive model M to start with,
and the existence of such a model is a very strong statement (stronger, in fact, than the
consistency of ZFC). To finish, we need another result.

4 N
Theorem 5.3.4 (Reflection principle)

For any sentence ¢, there is a countable transitive set X such that ¢~ <= o.

/)

Problem 5.3.6 (5 points)

Show that given a finite list of axioms of ZFC, there exists a countable transitive set
in which these axioms are true.

This seems innocent enough — we can only make finitely many axioms true at a time,
so what? But remember that a proof only ever uses finitely many axioms, so this result
is actually very powerful, as we will see below.

Theorem 5.3.5 (Cohen)
If ZFC is consistent, then ZFC * CH.

Proof. Suppose that we have a proof of CH from the axioms of ZFC. We know that if we
assume the existence of a countable transitive model M of ZFC, then we would be able
to construct proofs of CHYIC! (by Lemma 4.2.2) and ~CHMIC] (by Problem 5.3.5), and
produce a contradiction.

Observe that producing this contradiction required only finitely many axioms of ZFC
relativized to M. By Problem 5.3.6, there exists a countable transitive set X in which
these axioms are true. We may repeat the proof above, but using X in place of M, to
deduce a contradiction. This contradicts our assumption that ZFC is consistent. O

Therefore, if ZFC is consistent, then the continuum hypothesis is independent from
ZFC. And this concludes the Power Round. Congratulations!

5.4 Epilogue: Towards Easton’s Theorem

There are no problems in this subsection. Feel free to read it in your spare time.

Ever since Paul Cohen invented the technique of forcing in 1963, it has been applied
to solve a myriad of problems in set theory. Most importantly, for our purposes, we now
know a lot more about just how badly the generalized continuum hypothesis can fail to
be true. The forcing techniques we have introduced are sufficient to force the statement
¢ > Ny, but we might ask: can we do better?

Indeed, it is not too hard to show that ¢ can be arbitrarily large. To do this, instead of
using Fn(ws X w,2) as our forcing notion (relativized to our countable transitive model
M, of course), we can use Fn(k X w,2), where k is any cardinal, say N, +3. Then, in the
exact same way, we can add x Cohen reals, and force ¢ > k.

43



PUM..C 1~

Naturally, we then ask: can we force the continuum to be equal to Xy, or some other
cardinal? This is slightly trickier: when we are adding Cohen reals, we don’t just add s
of them; due to cardinal arithmetic, we actually get

CM[G] _ (CNO)M[G} > (/ﬁ;NO)M[G] > (HNO)M,

and it can be shown that these are in fact equalities: that is, ¢ = £ in M[G]. But the
value of kM is pretty much impossible to compute, unless GCH is true in M. To fix this
issue, we can simply assume that GCH is true in M. After all, we know (by Godel) that
if ZFC is consistent, then it can’t disprove GCH, so this assumption is fair game by the
reflection principle. By Problem 3.3.5, if c¢f K > X, then we have k™0 = &, so we force
¢ = k. Of course, Problem 3.3.4 forbids us from going any further: if cf kK = Vg, then ¢
cannot be equal to k. But still, this tells us that the cardinality of the continuum can be
just about anything we want it to be!

Can we force something out of 28!, or other instances of cardinal exponentiation? Of
course, but we need to modify our argument. Let Fn(Z, J,;\) be the set of functions f
which are subsets of I x J, but instead of requiring that f be finite, this time we require
that |f| < A. Instead of a countable chain condition, we now have a x-chain condition,
which states that every strong antichain has cardinality less than k. The arguments also
become more complicated. But it is worth it: we can do a lot of fun things like using the
forcing notion Fn(wy x wy,2,w;) to force 28 = V.

And why not try to force multiple times, and force multiple things? By being clever
about which forcing notions to use in which order, we can construct generic extensions
in which 2% = &; and 2% = X3 and 282 = R, 17, or pretty much any combination of
equations you want, as long as Problem 3.3.4 is not violated.

In 1970, William Easton substantially generalized all of this by proving his celebrated
theorem: the powers of regular cardinals can be anything that isn’t outright impossible
(by Problem 3.3.4). More precisely:

Theorem 5.4.1 (Easton) h

Let E be a class function, where dom(FE) is a class of regular cardinals and ran(F)
is a class of infinite cardinals. If E is non-decreasing, and cf(E(k)) > k for every
in the domain of F, then the statement

2" = E(k) for every k € dom(FE)

is independent from ZFC (as long as ZFC is consistent).

- J

So what about singular cardinals? These are somehow much more challenging to deal
with, and Easton’s proof completely failed to say anything about them. It wasn’t until
1975 that Jack Silver proved the following:

Theorem 5.4.2 (Silver)

The smallest cardinal x for which 2% > kT, if it exists, cannot be a singular cardinal
of uncountable cofinality.

These days, singular cardinals are still as mysterious as ever. Several strange results
have been shown about them: for example, Saharon Shelah proved that if N, is a strong
limit cardinal, then 2% < X,,,. But not much is known in general.
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